A209816
Number of partitions of 2n in which every part is
1, 3, 7, 15, 30, 58, 105, 186, 318, 530, 863, 1380, 2164, 3345, 5096, 7665, 11395, 16765, 24418, 35251, 50460, 71669, 101050, 141510, 196888, 272293, 374423, 512081, 696760, 943442, 1271527, 1706159, 2279700, 3033772, 4021695, 5311627, 6990367, 9168321
Offset: 1
Keywords
Examples
The 7 partitions of 6 with parts <4 are as follows: 3+3, 3+2+1, 3+1+1+1 2+2+2, 2+2+1+1, 2+1+1+1+1 1+1+1+1+1+1. Matching partitions of 2 into rationals as described: 1 + 1 1 + 3/3 + 1/3 1 + 1/3 + 1/3 + 1/3 2/3 + 2/3 + 2/3 2/3 + 2/3 + 1/3 + 1/3 2/3 + 1/3 + 1/3 + 1/3 + 1/3 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3. From _Seiichi Manyama_, May 07 2018: (Start) n | Partitions of 3n into n parts --+------------------------------------------------- 1 | 3; 2 | 5+1, 4+2, 3+3; 3 | 7+1+1, 6+2+1, 5+3+1, 5+2+2, 4+4+1, 4+3+2, 3+3+3; (End) From _Gus Wiseman_, Oct 24 2018: (Start) The a(1) = 1 through a(4) = 15 partitions: (11) (22) (33) (44) (211) (222) (332) (1111) (321) (422) (2211) (431) (3111) (2222) (21111) (3221) (111111) (3311) (4211) (22211) (32111) (41111) (221111) (311111) (2111111) (11111111) (End)
Links
Crossrefs
Programs
-
Haskell
a209816 n = p [1..n] (2*n) where p _ 0 = 1 p [] _ = 0 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Nov 14 2013
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) end: a:= n-> b(2*n, n): seq(a(n), n=1..50); # Alois P. Heinz, Jul 09 2012
-
Mathematica
f[n_] := Length[Select[IntegerPartitions[2 n], First[#] <= n &]]; Table[f[n], {n, 1, 30}] (* A209816 *) Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,2*n}],{n,1,20}] (* Vaclav Kotesovec, May 25 2015 *) Table[Length@IntegerPartitions[3n, {n}], {n, 25}] (* Vladimir Reshetnikov, Jul 24 2016 *) b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2*n, n]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=1..n} A008284(2*n, k) = A000041(2*n) - A000070(n-1), for n >= 1. - Wolfdieter Lang, May 21 2019
Extensions
More terms from Alois P. Heinz, Jul 09 2012
Comments