A004000 RATS: Reverse Add Then Sort the digits applied to previous term, starting with 1.
1, 2, 4, 8, 16, 77, 145, 668, 1345, 6677, 13444, 55778, 133345, 666677, 1333444, 5567777, 12333445, 66666677, 133333444, 556667777, 1233334444, 5566667777, 12333334444, 55666667777, 123333334444, 556666667777, 1233333334444, 5566666667777, 12333333334444
Offset: 1
Examples
668 -> 668 + 866 = 1534 -> 1345.
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2002 (first 200 terms from T. D. Noe)
- R. K. Guy, Conway's RATS and other reversals, Amer. Math. Monthly, 96 (1989), 425-428.
- Eric Weisstein's World of Mathematics, RATS Sequence.
Crossrefs
Programs
-
Haskell
a004000_list = iterate a036839 1 -- Reinhard Zumkeller, Mar 14 2012
-
Magma
[ n eq 1 select 1 else Seqint(Reverse(Sort(Intseq(p + Seqint(Reverse(Intseq(p))) where p is Self(n-1))))) : n in [1..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 20061
-
Maple
read transforms; RATS := n -> digsort(n + digrev(n)); b := [1]; t := [1]; for n from 1 to 50 do t := RATS(t); b := [op(b),t]; od: b;
-
Mathematica
NestList[FromDigits[Sort[IntegerDigits[#+FromDigits[Reverse[ IntegerDigits[#]]]]]]&,1,30] (* Harvey P. Dale, Nov 29 2011 *)
-
PARI
step(n)=fromdigits(vecsort(digits(n+fromdigits(Vecrev(digits(n)))))) \\ Charles R Greathouse IV, Jun 23 2017
-
Python
l = [0, 1] for n in range(2, 51): x = str(l[n - 1]) l.append(int(''.join(sorted(str(int(x) + int(x[::-1])))))) print(l[1:]) # Indranil Ghosh, Jul 05 2017
Formula
Let a(n) = k, form m by Reversing the digits of k, Add m to k Then Sort the digits of the sum into increasing order to get a(n+1).
a(n+1) = A036839(a(n)). - Reinhard Zumkeller, Mar 14 2012
a(2n-1) = (37 * 10^(n-3) + 3332)/3, n >= 11; a(2n) = (167 * 10^(n-3) + 3331)/3, n >= 10. - Jianing Song, May 06 2021
Extensions
Entry revised by N. J. A. Sloane, Jan 19 2002
Comments