A210184 Number of distinct residues of all factorials mod prime(n).
2, 3, 4, 5, 6, 10, 12, 12, 17, 19, 21, 26, 29, 26, 31, 35, 37, 41, 42, 39, 44, 49, 55, 59, 59, 65, 71, 75, 63, 73, 80, 82, 90, 90, 104, 86, 103, 104, 107, 111, 113, 114, 120, 125, 120, 115, 139, 149, 132, 141, 147, 150, 147, 164, 166, 172, 172, 170, 172, 180
Offset: 1
Keywords
Examples
Let n=4, p_4=7. We have modulo 7: 1!==1, 2!==2, 3!==6, 4!==3, 5!==1, 6!==6 and for m>=7, m!==0, such that we have 5 distinct residues 0,1,2,3,6. Therefore a(4) = 5.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1...1000 from Alois P. Heinz)
- Yong-Gao Chen and Li-Xia Dai, Congruences with factorials modulo p, INTEGERS 6 (2006), #A21.
Programs
-
Maple
a:= proc(n) local p, m, i, s; p:= ithprime(n); m:= 1; s:= {}; for i to p do m:= m*i mod p; s:=s union {m} od; nops(s) end: seq(a(n), n=1..100); # Alois P. Heinz, Mar 19 2012
-
Mathematica
Table[Length[Union[Mod[Range[Prime[n]]!, Prime[n]]]], {n, 100}] (* T. D. Noe, Mar 18 2012 *)
-
PARI
apply(p->#Set(vector(p,n,n!)%p), primes(100)) \\ Charles R Greathouse IV, May 11 2015
-
PARI
a(n,p=prime(n))=my(t=1); #Set(vector(p,n,t=(t*n)%p)) \\ Charles R Greathouse IV, May 11 2015
Comments