cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210184 Number of distinct residues of all factorials mod prime(n).

Original entry on oeis.org

2, 3, 4, 5, 6, 10, 12, 12, 17, 19, 21, 26, 29, 26, 31, 35, 37, 41, 42, 39, 44, 49, 55, 59, 59, 65, 71, 75, 63, 73, 80, 82, 90, 90, 104, 86, 103, 104, 107, 111, 113, 114, 120, 125, 120, 115, 139, 149, 132, 141, 147, 150, 147, 164, 166, 172, 172, 170, 172, 180
Offset: 1

Views

Author

Vladimir Shevelev, Mar 18 2012

Keywords

Comments

Conjecture: a(n)/p_n > 1/2.
The standard (folklore?) conjecture is that a(n)/prime(n) = 1 - 1/e = 0.63212.... - Charles R Greathouse IV, May 11 2015

Examples

			Let n=4, p_4=7. We have modulo 7: 1!==1, 2!==2, 3!==6, 4!==3, 5!==1, 6!==6 and for m>=7, m!==0, such that we have 5 distinct residues 0,1,2,3,6. Therefore a(4) = 5.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local p, m, i, s;
          p:= ithprime(n);
          m:= 1;
          s:= {};
          for i to p do m:= m*i mod p; s:=s union {m} od;
          nops(s)
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 19 2012
  • Mathematica
    Table[Length[Union[Mod[Range[Prime[n]]!, Prime[n]]]], {n, 100}] (* T. D. Noe, Mar 18 2012 *)
  • PARI
    apply(p->#Set(vector(p,n,n!)%p), primes(100)) \\ Charles R Greathouse IV, May 11 2015
    
  • PARI
    a(n,p=prime(n))=my(t=1); #Set(vector(p,n,t=(t*n)%p)) \\ Charles R Greathouse IV, May 11 2015