A210185 Sum of distinct residues of all factorials mod prime(n).
1, 3, 7, 12, 24, 56, 97, 103, 156, 224, 341, 494, 608, 521, 732, 821, 997, 1412, 1312, 1228, 1592, 1984, 2212, 2503, 2583, 3158, 3644, 3846, 3309, 4004, 5149, 5394, 6214, 6129, 7667, 6371, 8100, 8320, 8464, 9174, 10195, 10083, 11973, 11660, 12174, 11530, 14053
Offset: 1
Keywords
Examples
Let n=4, p_4=7. We have modulo 7: 1!==1, 2!==2, 3!==6, 4!==3, 5!==1, 6!==6 and for m>=7, m!==0, such that we have 5 distinct residues 0,1,2,3,6. Therefore a(4)=0+1+2+3+6=12.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
Table[Total[Union[Mod[Range[Prime[n]]!, Prime[n]]]], {n, 100}] (* T. D. Noe, Mar 18 2012 *)
-
PARI
a(n) = my(p=prime(n)); vecsum(Set(vector(p, k, k! % p))); \\ Michel Marcus, Dec 15 2018