cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210434 Number of digits in 4^n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 30, 31, 31, 32, 32, 33, 34, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 41
Offset: 0

Views

Author

Luc Comeau-Montasse, Mar 21 2012

Keywords

Comments

Since log10(4) = A114493 ~ 0.60205 (= twice log10(2) = 0.30102999566...), the first 98 terms are equal to floor(n*3/5)+1. - M. F. Hasler, Mar 31 2025

Examples

			a(4) = 3 because 4^4 = 256, which has 3 digits.
a(5) = 4 because 4^5 = 1024, which has 4 digits.
		

Crossrefs

Programs

  • Magma
    [#Intseq(4^n): n in [0..68]]; // Bruno Berselli, Mar 22 2012
    
  • Maple
    a:= n-> length(4^n): seq(a(n), n=0..100); # Alois P. Heinz, Mar 22 2012
  • Mathematica
    Table[Length[IntegerDigits[4^n]], {n, 0, 68}] (* Bruno Berselli, Mar 22 2012 *)
  • PARI
    apply( {A210434(n)=logint(4^n,10)+1}, [0..66]) \\ M. F. Hasler, Mar 31 2025
    
  • PARI
    a(n)=log(4)*n\log(10)+1 \\ correct up to n ~ 10^precision, with default precision = 38. - M. F. Hasler, Mar 31 2025
    
  • Python
    from math import log
    def A210434(n): return int(n*log(4,10))+1 if n<1e16 else "not enough precision" # M. F. Hasler, Mar 31 2025

Formula

a(n) = A055642(A000302(n)) = A055642(4^n) = floor(log_10(10*(4^n))). - Jonathan Vos Post, Mar 22 2012