cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210448 Total number of different letters summed over all ternary words of length n.

Original entry on oeis.org

0, 3, 15, 57, 195, 633, 1995, 6177, 18915, 57513, 174075, 525297, 1582035, 4758393, 14299755, 42948417, 128943555, 387027273, 1161475035, 3485211537, 10457207475, 31374768153, 94130595915, 282404370657, 847238277795, 2541765165033, 7625396158395, 22876389801777, 68629572058515
Offset: 0

Views

Author

Geoffrey Critzer, Jan 20 2013

Keywords

Comments

These are the numbers d(n,3) studied by J. L. Martin. - N. J. A. Sloane, Sep 13 2014
For n >= 0, the number of ternary sequences of length n+1, that contain at least one pair of same consecutive digits. - Armend Shabani, Apr 10 2019

Examples

			a(2) = 15 because the length 2 words on alphabet {0,1,2} are: 00, 01, 02, 10, 11, 12, 20, 21, 22 and we sum respectively 1 + 2 + 2 + 2 + 1 + 2 + 2 + 2 + 1 = 15.
		

Crossrefs

A diagonal of the triangle in A079268.

Programs

  • Maple
    a:= n-> 3*(3^n-2^n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 20 2013
  • Mathematica
    nn=28; Range[0,nn]!CoefficientList[Series[D[(1+y(Exp[x]-1))^3,y]/.y->1, {x,0,nn}], x]
    (* Second program: *)
    LinearRecurrence[{5, -6}, {0, 3}, 30] (* Jean-François Alcover, Jan 09 2019 *)

Formula

E.g.f.: 3*exp(3x) - 3*exp(2x).
See Mathematica code for a more transparent version of the e.g.f.
Generally for an m-ary word of length n: m*exp(m*x) - m*exp((m-1)*x)
From Alois P. Heinz, Jan 20 2013: (Start)
a(n) = 3*(3^n-2^n) = 3*A001047(n).
G.f.: 3*x/((3*x-1)*(2*x-1)).
(End)
a(n) = A217764(n,5). - Ross La Haye, Mar 27 2013