A210448 Total number of different letters summed over all ternary words of length n.
0, 3, 15, 57, 195, 633, 1995, 6177, 18915, 57513, 174075, 525297, 1582035, 4758393, 14299755, 42948417, 128943555, 387027273, 1161475035, 3485211537, 10457207475, 31374768153, 94130595915, 282404370657, 847238277795, 2541765165033, 7625396158395, 22876389801777, 68629572058515
Offset: 0
Examples
a(2) = 15 because the length 2 words on alphabet {0,1,2} are: 00, 01, 02, 10, 11, 12, 20, 21, 22 and we sum respectively 1 + 2 + 2 + 2 + 1 + 2 + 2 + 2 + 1 = 15.
Links
- Philippe Flajolet and Robert Sedgewick, Combinatorial Parameters and MGFs, lecture slides Analytic Combinatorics, 2012.
- J. L. Martin, The slopes determined by n points in the plane [Dead link]
- Jeremy L. Martin, The slopes determined by n points in the plane, arXiv:math/0302106 [math.AG], 2003-2006; Duke Math. J. 131 (2006), no. 1, 119-165. See table of d(n,k), but beware errors.
- Index entries for linear recurrences with constant coefficients, signature (5,-6).
Programs
-
Maple
a:= n-> 3*(3^n-2^n): seq(a(n), n=0..30); # Alois P. Heinz, Jan 20 2013
-
Mathematica
nn=28; Range[0,nn]!CoefficientList[Series[D[(1+y(Exp[x]-1))^3,y]/.y->1, {x,0,nn}], x] (* Second program: *) LinearRecurrence[{5, -6}, {0, 3}, 30] (* Jean-François Alcover, Jan 09 2019 *)
Formula
E.g.f.: 3*exp(3x) - 3*exp(2x).
See Mathematica code for a more transparent version of the e.g.f.
Generally for an m-ary word of length n: m*exp(m*x) - m*exp((m-1)*x)
From Alois P. Heinz, Jan 20 2013: (Start)
a(n) = 3*(3^n-2^n) = 3*A001047(n).
G.f.: 3*x/((3*x-1)*(2*x-1)).
(End)
a(n) = A217764(n,5). - Ross La Haye, Mar 27 2013
Comments