cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A217764 Array defined by a(n,k) = floor((k+2)/2)*3^n - floor((k+1)/2)*2^n, read by antidiagonals.

Original entry on oeis.org

1, 3, 0, 9, 1, 1, 27, 5, 4, 0, 81, 19, 14, 2, 1, 243, 65, 46, 10, 5, 0, 729, 211, 146, 38, 19, 3, 1, 2187, 665, 454, 130, 65, 15, 6, 0, 6561, 2059, 1394, 422, 211, 57, 24, 4, 1, 19683, 6305, 4246, 1330, 665, 195, 84, 20, 7, 0, 59049, 19171, 12866, 4118, 2059, 633, 276, 76, 29, 5, 1
Offset: 0

Views

Author

Ross La Haye, Mar 23 2013

Keywords

Comments

Columns 0,1,2,3 respectively correspond to relations R_3, R_4, R_0, R_1 defined in La Haye paper listed below.

Examples

			a(4,4) = 211 because floor((4+2)/2)*3^4 - floor((4+1)/2)*2^4 = 3*3^4 - 2*2^4 = 243 - 32 = 211.
		

Crossrefs

Cf. a(1,k) = A084964(k+2); a(n,0) = A000244(n); a(n,1) = A001047(n); a(n,2) = A027649(n); a(n,3) = A056182(n); a(n,4) = A001047(n+1); a(n,5) = A210448(n); a(n,6) = A166060(n); a(n,7) = A145563(n); a(n,8) = A102485(n).

Formula

a(n,k) = floor((k+2)/2)*3^n - floor((k+1)/2)*2^n. a(n,k) = 5*a(n-1,k) - 6*a(n-2,k); a(0,k) = floor((k+2)/2) - floor((k+1)/2), a(1,k) = floor((k+2)/2)*3 - floor((k+1)/2)*2.

A145563 a(0)=0 and a(n+1) = 3*a(n) + 2^(n+2).

Original entry on oeis.org

0, 4, 20, 76, 260, 844, 2660, 8236, 25220, 76684, 232100, 700396, 2109380, 6344524, 19066340, 57264556, 171924740, 516036364, 1548633380, 4646948716, 13942943300, 41833024204, 125507461220, 376539160876, 1129651037060, 3389020220044, 10167194877860
Offset: 0

Views

Author

N. J. A. Sloane, Mar 18 2009

Keywords

Comments

Suggested by a discussion on the Sequence Fans Mailing List; the formula is due to Andrew V. Sutherland.
First differences of A255459. - Klaus Purath, Apr 25 2020

Crossrefs

Programs

  • Magma
    [ 4*(3^n - 2^n): n in [0..50]]; // Vincenzo Librandi, Apr 24 2011
    
  • Mathematica
    CoefficientList[Series[4x/((1-2x)(1-3x)),{x,0,40}],x] (* or *) RecurrenceTable[{a[0]==0, a[n]==(3a[n-1]+2^(n+1))},a,{n,40}] (* Harvey P. Dale, Apr 24 2011 *)
  • PARI
    a(n) = 4*(3^n - 2^n) \\ Felix Fröhlich, Sep 01 2018

Formula

From R. J. Mathar, Mar 18 2009: (Start)
a(n) = 4*(3^n - 2^n) = 4*A001047(n).
G.f.: 4*x/((1-2*x)*(1-3*x)). (End)
a(n) = A056182(n)*2. - Omar E. Pol, Mar 18 2009
a(n) = A217764(n,7). - Ross La Haye, Mar 27 2013
From Klaus Purath, Apr 25 2020: (Start)
a(n) = 5*a(n-1) - 6*a(n-2).
a(n) = 2*A210448(n) - A056182(n).
a(n) = (A056182(n) + A245804(n+1))/2. (End)

A245804 a(n) = 2*3^n - 3*2^n.

Original entry on oeis.org

-1, 0, 6, 30, 114, 390, 1266, 3990, 12354, 37830, 115026, 348150, 1050594, 3164070, 9516786, 28599510, 85896834, 257887110, 774054546, 2322950070, 6970423074, 20914414950, 62749536306, 188261191830, 564808741314, 1694476555590, 5083530330066, 15250792316790
Offset: 0

Views

Author

Vincenzo Librandi, Aug 03 2014

Keywords

Comments

Essentially 2 * A210448. - Joerg Arndt, Aug 03 2014

Crossrefs

Programs

  • Magma
    [2*3^n-3*2^n: n in [0..40]];
    
  • Magma
    I:=[-1,0]; [n le 2 select I[n] else 5*Self(n-1)-6*Self(n-2): n in [1..30]];
  • Mathematica
    CoefficientList[Series[(-1 + 5 x)/((1 - 2 x) (1 - 3 x)), {x, 0, 30}], x]
    Table[(2 3^n - 3 2^n), {n, 0, 30}] (* Vincenzo Librandi, Aug 04 2014 *)

Formula

G.f.: (-1 +5*x)/((1-2*x)(1-3*x)).
a(n) = 5*a(n-1) -6*a(n-2) for n>1.
a(n) = A008776(n) - A007283(n). - Michel Marcus, Aug 03 2014

A079268 Triangle read by rows: d(n,k) = number of decreasing labeled trees with n nodes and largest leaf <= k, for 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 7, 15, 15, 1, 15, 57, 105, 105, 1, 31, 195, 561, 945, 945, 1, 63, 633, 2685, 6555, 10395, 10395, 1, 127, 1995, 12105, 40725, 89055, 135135, 135135, 1, 255, 6177, 52605, 237555, 684495, 1381905, 2027025, 2027025, 1, 511, 18915, 223161
Offset: 1

Views

Author

Jeremy Martin (martin(AT)math.umn.edu), Feb 05 2003

Keywords

Examples

			Triangle begins
1,
1, 1,
1, 3, 3,
1, 7, 15, 15,
1, 15, 57, 105, 105,
1, 31, 195, 561, 945, 945,
1, 63, 633, 2685, 6555, 10395, 10395,
...
		

Crossrefs

First three columns are A000012, A000225, A210448, rightmost two diagonals are both A001147, difference of second- and third-rightmost diagonals is A000165.

Formula

Recurrence: d(n, k) = 1 for n=0 or k=1, d(n, k) = 0 for n>0 and either k<0 or k>n, d(n, k) = d(n-1, k) + d(n, k-1) + Sum_{w=0..k-2, x=0..n-k-1} binomial(k-1, w) * binomial(n-k, x) * d(n-k+w-x, w+1) * d(k-w+x, k-w-1).
Showing 1-4 of 4 results.