A210615 Least semiprime dividing n, or 0 if no semiprime divides n.
0, 0, 0, 4, 0, 6, 0, 4, 9, 10, 0, 4, 0, 14, 15, 4, 0, 6, 0, 4, 21, 22, 0, 4, 25, 26, 9, 4, 0, 6, 0, 4, 33, 34, 35, 4, 0, 38, 39, 4, 0, 6, 0, 4, 9, 46, 0, 4, 49, 10, 51, 4, 0, 6, 55, 4, 57, 58, 0, 4, 0, 62, 9, 4, 65, 6, 0, 4, 69, 10, 0, 4, 0, 74, 15, 4, 77, 6
Offset: 1
Examples
a(24) = 4 because 24 is divisible by the semiprimes {4,6} of which 4 is the smallest.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[If[PrimeQ[n] || n < 2, 0, f = FactorInteger[n]; If[f[[1,2]] > 1, f[[1,1]]^2, f[[1,1]]*f[[2,1]]]], {n, 100}] (* T. D. Noe, Mar 24 2012 *) Flatten[Table[Select[Divisors[n],PrimeOmega[#]==2&,1],{n,80}]/.{}->{0}] (* Harvey P. Dale, Dec 07 2012 *)
Formula
a(n) = min {k such that k|n and k in A001358} else 0 if there exists no such k.
a(p) = 0 iff p in A008578. - Alois P. Heinz, Mar 28 2012
Comments