cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211014 Second 14-gonal numbers: n*(6*n+5).

Original entry on oeis.org

0, 11, 34, 69, 116, 175, 246, 329, 424, 531, 650, 781, 924, 1079, 1246, 1425, 1616, 1819, 2034, 2261, 2500, 2751, 3014, 3289, 3576, 3875, 4186, 4509, 4844, 5191, 5550, 5921, 6304, 6699, 7106, 7525, 7956, 8399, 8854, 9321, 9800, 10291, 10794, 11309, 11836, 12375
Offset: 0

Views

Author

Omar E. Pol, Aug 04 2012

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 34, ... and the line from 11 in the direction 11, 69, ..., in the square spiral whose vertices are the generalized 14-gonal numbers A195818.

Crossrefs

Bisection of A195818.
Second k-gonal numbers (k=5..14): A005449, A014105, A147875, A045944, A179986, A033954, A062728, A135705, A211013, this sequence.
Cf. A051866.
Cf. A003154.

Programs

Formula

a(n) = -2*Sum_{k=0..n-1} binomial(6*n+5, 6*k+8)*Bernoulli(6*k+8). - Michel Marcus, Jan 11 2016
From G. C. Greubel, Jul 04 2019: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(11+x)/(1-x)^3.
E.g.f.: x*(11+6*x)*exp(x). (End)
From Amiram Eldar, Feb 28 2022: (Start)
Sum_{n>=1} 1/a(n) = sqrt(3)*Pi/10 + 6/25 - 3*log(3)/10 - 2*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/5 + log(2)/5 - 6/25 - sqrt(3)*log(sqrt(3)+2)/5. (End)
a(n) = A003154(n+1) - n - 1. - Leo Tavares, Jan 29 2023