A211014 Second 14-gonal numbers: n*(6*n+5).
0, 11, 34, 69, 116, 175, 246, 329, 424, 531, 650, 781, 924, 1079, 1246, 1425, 1616, 1819, 2034, 2261, 2500, 2751, 3014, 3289, 3576, 3875, 4186, 4509, 4844, 5191, 5550, 5921, 6304, 6699, 7106, 7525, 7956, 8399, 8854, 9321, 9800, 10291, 10794, 11309, 11836, 12375
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Mark W. Coffey, Bernoulli identities, zeta relations, determinant expressions, Mellin transforms, and representation of the Hurwitz numbers, arXiv:1601.01673 [math.NT], 2016. See 3rd formula in Proposition 3 p. 36 giving a(n+1).
- Leo Tavares, Star illustration
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n-> n*(6*n+5)); # G. C. Greubel, Jul 04 2019
-
Magma
[n*(6*n+5): n in [0..50]]; // G. C. Greubel, Jul 04 2019
-
Mathematica
Table[n*(6*n+5), {n,0,50}] (* G. C. Greubel, Jul 04 2019 *) LinearRecurrence[{3,-3,1},{0,11,34},50] (* Harvey P. Dale, Dec 12 2022 *)
-
PARI
a(n)=n*(6*n+5) \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[n*(6*n+5) for n in (0..50)] # G. C. Greubel, Jul 04 2019
Formula
a(n) = -2*Sum_{k=0..n-1} binomial(6*n+5, 6*k+8)*Bernoulli(6*k+8). - Michel Marcus, Jan 11 2016
From G. C. Greubel, Jul 04 2019: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(11+x)/(1-x)^3.
E.g.f.: x*(11+6*x)*exp(x). (End)
From Amiram Eldar, Feb 28 2022: (Start)
Sum_{n>=1} 1/a(n) = sqrt(3)*Pi/10 + 6/25 - 3*log(3)/10 - 2*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/5 + log(2)/5 - 6/25 - sqrt(3)*log(sqrt(3)+2)/5. (End)
a(n) = A003154(n+1) - n - 1. - Leo Tavares, Jan 29 2023
Comments