cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A195818 Generalized 14-gonal numbers: m*(6*m-5), m = 0,+1,-1,+2,-2,+3,-3,...

Original entry on oeis.org

0, 1, 11, 14, 34, 39, 69, 76, 116, 125, 175, 186, 246, 259, 329, 344, 424, 441, 531, 550, 650, 671, 781, 804, 924, 949, 1079, 1106, 1246, 1275, 1425, 1456, 1616, 1649, 1819, 1854, 2034, 2071, 2261, 2300, 2500, 2541, 2751, 2794, 3014, 3059, 3289
Offset: 0

Views

Author

Omar E. Pol, Sep 29 2011

Keywords

Comments

Also generalized tetradecagonal numbers or generalized tetrakaidecagonal numbers.
Also A211014 and positive terms of A051866 interleaved. - Omar E. Pol, Aug 04 2012
Exponents in expansion of Product_{n >= 1} (1 + x^(12*n-11))*(1 + x^(12*n-1))*(1 - x^(12*n)) = 1 + x + x^11 + x^14 + x^34 + .... - Peter Bala, Dec 10 2020

Crossrefs

Partial sums of A195817.
Column 10 of A195152.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), this sequence (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [(3*n*(n+1)+(2*n+1)*(-1)^n-1)/2: n in [0..60]]; // Vincenzo Librandi, Sep 30 2011
    
  • Magma
    A195818:=func; [0] cat [A195818(n*m): m in [1,-1], n in [1..25]];
    
  • Maple
    a:= n-> (m-> m*(6*m-5))(ceil(-(n+1)/2)*(-1)^n):
    seq(a(n), n=0..46);  # Alois P. Heinz, Jun 08 2021
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{0,1,11,14,34},50] (* Harvey P. Dale, Mar 13 2018 *)
  • PARI
    Vec(-x*(x^2+10*x+1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 15 2013

Formula

a(n) = (3*n*(n+1) + (2*n+1)*(-1)^n - 1)/2. - Vincenzo Librandi, Sep 30 2011
G.f.: -x*(x^2+10*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Sep 15 2013
Sum_{n>=1} 1/a(n) = 6/25 + sqrt(3)*Pi/5. - Vaclav Kotesovec, Oct 05 2016
E.g.f.: (x*(3*x + 4)*cosh(x) + (3*x^2 + 8*x - 2)*sinh(x))/2. - Stefano Spezia, Jun 08 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = (5*log(432)-6)/25. - Amiram Eldar, Feb 28 2022

A211013 Second 13-gonal numbers: a(n) = n*(11*n+9)/2.

Original entry on oeis.org

0, 10, 31, 63, 106, 160, 225, 301, 388, 486, 595, 715, 846, 988, 1141, 1305, 1480, 1666, 1863, 2071, 2290, 2520, 2761, 3013, 3276, 3550, 3835, 4131, 4438, 4756, 5085, 5425, 5776, 6138, 6511, 6895, 7290, 7696, 8113, 8541, 8980, 9430, 9891, 10363
Offset: 0

Views

Author

Omar E. Pol, Aug 04 2012

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 31... and the line from 10, in the direction 10, 63,..., in the square spiral whose vertices are the generalized 13-gonal numbers A195313.

Crossrefs

Bisection of A195313.
Second k-gonal numbers (k=5..14): A005449, A014105, A147875, A045944, A179986, A033954, A062728, A135705, this sequence, A211014.
Cf. A051865.

Programs

Formula

G.f.: x*(10+x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 10, a(2) = 31. - Philippe Deléham, Mar 27 2013
a(n) = A051865(n) + 9n = A180223(n) + 8n = A022268(n) + 5n = A022269(n) + 4n = A152740(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = A218530(11n+9). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(20 + 11*x)*exp(x)/2. - G. C. Greubel, Jul 04 2019

A221912 Partial sums of floor(n/12).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008730.

Examples

			..0....0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Floor[Range[0,70]/12]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2},70] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(12n) = A051866(n).
a(12n+1) = A139267(n).
a(12n+2) = A094159(n).
a(12n+3) = A033579(n).
a(12n+4) = A049452(n).
a(12n+5) = A033581(n).
a(12n+6) = A049453(n).
a(12n+7) = A033580(n).
a(12n+8) = A195319(n).
a(12n+9) = A202804(n).
a(12n+10) = A211014(n).
a(12n+11) = A049598(n).
G.f.: x^12/((1-x)^2*(1-x^12)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=0, a(11)=0, a(12)=1, a(13)=2, a(n)=2*a(n-1)- a(n-2)+ a(n-12)- 2*a(n-13)+ a(n-14). - Harvey P. Dale, Mar 23 2015

A008730 Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 186, 192, 198, 204
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
550..560..570..580..590..600..610..620..630..640..650..660
...
The columns are: A051866, A139267, A094159, A033579, A049452, A033581, A049453, A033580, A195319, A202804, A211014, A049598
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^12)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    seq(coeff(series(1/(1-x)^2/(1-x^12), x, n+1), x, n), n=0..80);
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^12)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,10,11,12,14,16},70] (* Harvey P. Dale, Jan 01 2024 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^12))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^12))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019

Formula

G.f. 1/( (1-x)^3 * (1+x) *(1+x+x^2) *(1-x+x^2) * (1+x^2) *(1-x^2+x^4)). - R. J. Mathar, Aug 11 2021
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+12} floor(j/12).
a(n-12) = (1/2)*floor(n/12)*(2*n - 10 - 12*floor(n/12)). (End)
a(n) = A221912(n+12). - Philippe Deléham, Apr 03 2013

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A345118 a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a basketweave pattern where all the multiple strands are of unit width, the horizontal ones appearing as 1 X 3 rectangles, while the vertical ones as unit area squares.

Original entry on oeis.org

0, 4, 11, 20, 34, 50, 69, 92, 116, 144, 175, 208, 246, 286, 329, 376, 424, 476, 531, 588, 650, 714, 781, 852, 924, 1000, 1079, 1160, 1246, 1334, 1425, 1520, 1616, 1716, 1819, 1924, 2034, 2146, 2261, 2380, 2500, 2624, 2751, 2880, 3014, 3150, 3289, 3432, 3576, 3724
Offset: 0

Views

Author

Stefano Spezia, Jun 08 2021

Keywords

Examples

			Illustrations for n = 1..8:
        _           _ _          _ _ _
       |_|         |_|_|        |_ _ _|
                   |_ _|        |_|_|_|
                                |_ _ _|
    a(1) = 4     a(2) = 11     a(3) = 20
     _ _ _ _     _ _ _ _ _    _ _ _ _ _ _
    |_ _|_|_|   |_ _|_|_ _|  |_|_|_ _ _|_|
    |_|_ _ _|   |_|_ _ _|_|  |_ _ _|_|_ _|
    |_ _|_|_|   |_ _|_|_ _|  |_|_|_ _ _|_|
    |_|_ _ _|   |_|_ _ _|_|  |_ _ _|_|_ _|
                |_ _|_|_ _|  |_|_|_ _ _|_|
                             |_ _ _|_|_ _|
    a(4) = 34    a(5) = 50     a(6) = 69
      _ _ _ _ _ _ _      _ _ _ _ _ _ _ _
     |_|_|_ _ _|_|_|    |_ _|_|_ _ _|_|_|
     |_ _ _|_|_ _ _|    |_|_ _ _|_|_ _ _|
     |_|_|_ _ _|_|_|    |_ _|_|_ _ _|_|_|
     |_ _ _|_|_ _ _|    |_|_ _ _|_|_ _ _|
     |_|_|_ _ _|_|_|    |_ _|_|_ _ _|_|_|
     |_ _ _|_|_ _ _|    |_|_ _ _|_|_ _ _|
     |_|_|_ _ _|_|_|    |_ _|_|_ _ _|_|_|
                        |_|_ _ _|_|_ _ _|
        a(7) = 92           a(8) = 116
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1,-1,3,-3,1},{0,4,11,20,34,50,69},50]
    a[ n_] := (3*n^2 + 5*n)/2 - (-1)^Floor[n/4]*Boole[Mod[n, 4] == 3]; (* Michael Somos, Jan 25 2024 *)
  • PARI
    concat(0, Vec(x*(4 - x - x^2 + 3*x^3 + x^4)/((1 - x)^3*(1 + x^4)) + O(x^40))) \\ Felix Fröhlich, Jun 09 2021
    
  • PARI
    {a(n) = (3*n^2 + 5*n)/2 - (-1)^(n\4)*(n%4==3)}; /* Michael Somos, Jan 25 2024 */

Formula

O.g.f.: x*(4 - x - x^2 + 3*x^3 + x^4)/((1 - x)^3*(1 + x^4)).
E.g.f.: (exp(x)*x*(8 + 3*x) + (-1)^(1/4)*(sinh((-1)^(1/4)*x) - sin((-1)^(1/4)*x)))/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) - a(n-4) + 3*a(n-5) - 3*a(n-6) + a(n-7) for n > 6.
a(n) = (n*(5 + 3*n) - (1 - (-1)^n)*sin((n-1)*Pi/4))/2.
a(n) = A211014(n/2) - A000035(n)*A056594((n-3)/2).
a(2*n) = A211014(n).
a(k) = A115067(k+1) for k not congruent to 3 mod 4 (A004773).
From Helmut Ruhland, Jan 29 2024: (Start)
For n > 1: a(n) - (2 * A368052(n+2) + A368052(n+3)) * 2 is periodic for n mod 8, i.e. a(n) = (2 * A368052(n+2) + A368052(n+3)) * 2 + f8(n) with
n mod 8 = 0 1 2 3 4 5 6 7
f8(n) = 0 0 -3 -2 -2 -2 1 0 (End)
Showing 1-5 of 5 results.