A014507 Number of digraphs with loops, having unlabeled (non-isolated) nodes and n labeled edges.
1, 2, 13, 162, 3075, 80978, 2784067, 119971162, 6289972169, 392257225754, 28582571639293, 2398695602082442, 229094801646110203, 24652935339990534970, 2963620352166634246995, 395067805289398293647026, 58025593661340099613984593, 9336949406574071339557552946
Offset: 0
Keywords
References
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..50
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
Programs
-
Maple
A014507 := proc(n) add(combinat[stirling1](n,k)*combinat[bell](2*k),k=0..n) ; end proc: seq(A014507(n),n=0..10) ; # R. J. Mathar, Apr 30 2017
-
Mathematica
a[n_] := Sum[StirlingS1[n, k]*BellB[2*k], {k, 0, n}]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jan 21 2018, from Vladeta Jovovic's formula *)
-
PARI
/* From Vladeta Jovovic's formula: */ {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)} {Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1),n)} {a(n)=sum(k=0, n, Stirling1(n, k)*Bell(2*k))}
Formula
a(n) = Sum_{k=0..n} Stirling1(n, k)*Bell(2*k). - Vladeta Jovovic, Jun 21 2003
E.g.f.: exp(-1)*Sum_{n>=0} (1+x)^(n^2)/n!. - Paul D. Hanna, Jul 03 2011
a(n) = n!*exp(-1)*Sum_{k>=sqrt(n)} binomial(k^2,n)/k!. - Paul D. Hanna, Jul 03 2011