A098622
Consider the family of directed multigraphs enriched by the species of set partitions. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 17, 250, 5465, 162677, 6241059, 297132409, 17075153860, 1159545515804, 91501467848088, 8276847825732141, 848577193578286942, 97672164219292005480, 12518933902769241287267, 1774279753092963892540493, 276351502436571180980604240, 47046745370508674770872396843
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
-
\\ here R(n) is A000110 as e.g.f.
egfA014507(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, stirling(i,k,1)*polcoef(bell, 2*k))*x^i/i!) + O(x*x^n)}
EnrichedGdlSeq(R)={my(n=serprec(R, x)-1); Vec(serlaplace(subst(egfA014507(n), x, R-polcoef(R,0))))}
R(n)={exp(exp(x + O(x*x^n))-1)}
EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A014505
Number of digraphs with unlabeled (non-isolated) nodes and n labeled edges.
Original entry on oeis.org
1, 1, 6, 68, 1206, 29982, 981476, 40515568, 2044492988, 123175320988, 8697475219688, 709097832452880, 65934837808883016, 6920436929999656936, 812724019581549433520, 105986960037601701495680
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
- G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
A098626
Consider the family of directed multigraphs enriched by the species of derangements. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 0, 2, 4, 57, 348, 5235, 57930, 1037540, 16842496, 363889755, 7792175070, 201054289293, 5345844537876, 162234861271288, 5156725529935952, 181284205622239755, 6713109719185427600, 269652617328843102055, 11418447984579685481310, 517839485352765454438270
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
A098630
Consider the family of directed multigraphs enriched by the species of parts. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 4, 60, 1624, 66240, 3711200, 269670208, 24435113216, 2682916389632, 349223324753408, 52965538033020928, 9229753832340117504, 1826647528631522463744, 406579171521484851396608, 100934277604965329345822720, 27746271707522968205726416896
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
-
a(n) = {2^n*sum(k=0, 2*n, stirling(2*n,k,2))} \\ Andrew Howroyd, Jan 12 2021
-
\\ R(n) is A000079 as e.g.f.; EnrichedGdlSeq defined in A098622.
R(n)={exp(2*x + O(x*x^n))}
EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A098638
Consider the family of directed multigraphs enriched by the species of odd sets. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 13, 164, 3127, 82600, 2845775, 122820136, 6446913953, 402413160952, 29343933156485, 2464029760993520, 235446319553848087, 25346231173047308256, 3047931031445529965527, 406412844141860523543392, 59704680455100785101683457, 9608818815170839730520275488
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
Missing a(10) inserted and terms a(13) and beyond from
Andrew Howroyd, Jan 12 2021
A099694
Consider the family of directed multigraphs enriched by the species of directed sets. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 17, 244, 5283, 156092, 5954547, 282221828, 16159327961, 1094056231572, 86116276633357, 7773114989571400, 795480206815177651, 91417037615848058160, 11701283925663217478843, 1656436690705751478232180, 257730676653629520748175377, 43837005194184348815823808500
Offset: 0
- G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
-
\\ R(n) is e.g.f. of 1, 1, 2, 2, 2, ...; EnrichedGdlSeq defined in A098622.
R(n)={2*exp(x + O(x*x^n)) - x - 1}
EnrichedGdlSeq(R(20)) \\ Andrew Howroyd, Jan 12 2021
A099698
Consider the family of directed multigraphs enriched by the species of involutions. Sequence gives number of those multigraphs with n labeled loops and arcs.
Original entry on oeis.org
1, 2, 17, 248, 5403, 160420, 6142567, 291996934, 16759322733, 1136940595762, 89641455771637, 8102778995663368, 830222723124364047, 95509354134959796556, 12236166882713532940611, 1733521075683722202738222, 269910543278748394820341769, 45936441912756036235229989058
Offset: 0
Dead sequence restored, corrected and extended by
Andrew Howroyd, Jan 12 2021
A211250
E.g.f.: exp(-1)*Sum_{n>=0} (1+x)^(n^3)/n!.
Original entry on oeis.org
1, 5, 198, 20548, 4088918, 1341552690, 661685880676, 460785157967228, 432879460822014552, 529918744425680488240, 822575286838815581568992, 1583737023708711008926884072, 3713773722396456674797120593784, 10445266376618187161982580673417192
Offset: 0
E.g.f.: A(x) = 1 + 5*x + 198*x^2/2! + 20548*x^3/3! + 4088918*x^4/4! +...
such that
A(x) = exp(-1)*(1 + (1+x) + (1+x)^8/2! + (1+x)^27/3! + (1+x)^64/4! +...).
-
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
{a(n)=sum(k=0, n, Stirling1(n, k)*Bell(3*k))}
for(n=0,15,print1(a(n),", "))
A211251
E.g.f.: exp(-1)*Sum_{n>=0} (1+x)^(n^4)/n!.
Original entry on oeis.org
1, 15, 4125, 4201207, 10454906015, 51619504083157, 445183896786430439, 6151183312376366042809, 127892318444027363237894001, 3815107763405827557700743314007, 157278812586433713743644391748289829, 8693308684725580082237757157480179540583
Offset: 0
E.g.f.: A(x) = 1 + 15*x + 4125*x^2/2! + 4201207*x^3/3! + 10454906015*x^4/4! +...
such that
A(x) = exp(-1)*(1 + (1+x) + (1+x)^16/2! + (1+x)^81/3! + (1+x)^256/4! +...).
-
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
{a(n)=sum(k=0, n, Stirling1(n, k)*Bell(4*k))}
for(n=0,15,print1(a(n),", "))
A211252
E.g.f.: exp(-1)*Sum_{n>=0} (1+x)^(n^5)/n!.
Original entry on oeis.org
1, 52, 115923, 1382610724, 51715861759515, 4638073139045397206, 846679440053068198564757, 281582422101970811697025996458, 157442703858164474987714673019721909, 139252837198831456324098952617013102583100, 185718002275320639405130518085966960592675564591
Offset: 0
E.g.f.: A(x) = 1 + 52*x + 115923*x^2/2! + 1382610724*x^3/3! + 51715861759515*x^4/4! +...
such that
A(x) = exp(-1)*(1 + (1+x) + (1+x)^32/2! + (1+x)^243/3! + (1+x)^1024/4! +...).
-
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
{a(n)=sum(k=0, n, Stirling1(n, k)*Bell(5*k))}
for(n=0,15,print1(a(n),", "))
Showing 1-10 of 18 results.