cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007865 Number of sum-free subsets of {1, ..., n}.

Original entry on oeis.org

1, 2, 3, 6, 9, 16, 24, 42, 61, 108, 151, 253, 369, 607, 847, 1400, 1954, 3139, 4398, 6976, 9583, 15456, 20982, 32816, 45417, 70109, 94499, 148234, 200768, 308213, 415543, 634270, 849877, 1311244, 1739022, 2630061, 3540355, 5344961, 7051789, 10747207, 14158720, 21295570, 28188520
Offset: 0

Views

Author

Keywords

Comments

More precisely, subsets of {1,...,n} containing no solutions of x+y=z.
There are two proofs that a(n) is 2^{n/2}(1+o(1)), as Paul Erdős and I conjectured.
In sumset notation, number of subsets A of {1,...,n} such that the intersection of A and 2A is empty. Using the Mathematica program, all such subsets can be printed. - T. D. Noe, Apr 20 2004
The Sapozhenko paper has many additional references.
If this sequence counts sum-free sets, then A326083 counts sum-closed sets, which is different from sum-full sets (A093971). - Gus Wiseman, Jul 08 2019

Examples

			{} has one sum-free subset, the empty set, so a(0)=1.
{1} has two sum-free subsets, {} and {1}, so a(1)=2.
a(2) = 3: 0,1,2.
a(3) = 6: 0,1,2,3,13,23.
a(4) = 9: 0,1,2,3,4,13,14,23,34.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 180-183.

Crossrefs

See A085489 for another version.
Cf. A211316, A211317, A093970, A093971 (number of sum-full subsets of 1..n).

Programs

  • Maple
    S3S:= {{}}: a[0]:= 1: for n from 1 to 35 do S3S:= S3S union map(t -> t union {n}, select(t -> (t intersect map(q -> n-q,t)={}),S3S)); a[n]:= nops(S3S) od: seq(a[n],n=0..35); # Code for computing (the number of) sum-free subsets of {1, ..., n} - Robert Israel
  • Mathematica
    SumFreeSet[ 0 ] = {{}}; SumFreeSet[ n_ ] := SumFreeSet[ n ] = Union[ SumFreeSet[ n - 1 ], Union[ #, {n} ] & /@ Select[ SumFreeSet[ n - 1 ], Intersection[ #, n - # ] == {} & ] ] As a check, enter Length /@ SumFreeSet /@ Range[ 0, 30 ] Alternatively, use NestList. n = 0; Length /@ NestList[ (++n; Union[ #, Union[ #, {n} ] & /@ Select[ #, Intersection[ #, n - # ] == {} & ] ]) &, {{}}, 30 ] (* from Paul Abbott, based on Robert Israel's Maple code *)
    Timing[ n = 0; Last[ Reap[ Nest[ (++n; Sow[ Length[ # ] ]; Union[ #, Union[ #, {n} ]& /@ Select[ #, Intersection[ #, n - # ] == {} & ] ]) &, {{}}, 36 ] ] ] ] (* improved code from Paul Abbott, Nov 24 2005 *)
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Tuples[#,2]]=={}&]],{n,1,10}] (* Gus Wiseman, Jul 08 2019 *)
  • PARI
    \\ good only for n <= 25:
    sumfree(v) = {for(i=1, #v, for (j=1, i, if (setsearch(v, v[i]+v[j]), return (0)););); return (1);}
    a(n) = {my(nb = 0); forsubset(n, s, if (sumfree(Set(s)), nb++);); nb;} \\ Michel Marcus, Nov 08 2020

Formula

a(n) = A050291(n)-A088810(n) = A085489(n)-A088811(n) = A050291(n)+A085489(n)-A088813(n). - Reinhard Zumkeller, Oct 19 2003

Extensions

More terms from John W. Layman, Oct 21 2000
Extended through a(35) by Robert Israel, Nov 16 2005
a(36)-a(37) from Alec Mihailovs (alec(AT)mihailovs.com) (using Robert Israel's procedure), Nov 16 2005
a(38) from Eric W. Weisstein, Nov 17 2005
a(39)-a(42) from Eric W. Weisstein, Nov 28 2005, using Paul Abbott's Mathematica code

A211316 Maximal size of sum-free set in additive group of integers mod n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 3, 5, 4, 6, 4, 7, 6, 8, 6, 9, 6, 10, 7, 11, 8, 12, 10, 13, 9, 14, 10, 15, 10, 16, 12, 17, 14, 18, 12, 19, 13, 20, 14, 21, 14, 22, 18, 23, 16, 24, 16, 25, 18, 26, 18, 27, 22, 28, 19, 29, 20, 30, 20, 31, 21, 32, 26, 33, 22, 34, 24, 35, 24
Offset: 2

Views

Author

N. J. A. Sloane, Apr 24 2012

Keywords

References

  • Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, Manuscript, May 2017. See Table in Section 1.6.1.
  • A. P. Street, Counting non-isomorphic sum-free sets, in Proc. First Australian Conf. Combinatorial Math., Univ. Newcastle, 1972, pp. 141-143.

Crossrefs

Bisection: A211317. Cf. A007865, A027748, A003627.

Programs

  • Haskell
    a211316 n | not $ null ps = n * (head ps + 1) `div` (3 * head ps)
              | m == 0        = n'
              | otherwise     = (n - 1) `div` 3
              where ps = [p | p <- a027748_row n, mod p 3 == 2]
                    (n',m) = divMod n 3
    -- Reinhard Zumkeller, Apr 25 2012
    
  • Mathematica
    a[n_] := Module[{f = FactorInteger[n][[All, 1]]}, For[i = 1, i <= Length[f], i++, If[Mod[f[[i]], 3]==2, Return[n*(f[[i]] + 1)/3/f[[i]]]]]; If[Mod[n, 3] == 1, n-1, n]/3]
    Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Aug 02 2018, from PARI *)
  • PARI
    a(n)=my(f=factor(n)[,1]); for(i=1,#f, if(f[i]%3==2, return(n*(f[i]+1)/3/f[i]))); if(n%3, n-1, n)/3 \\ Charles R Greathouse IV, Sep 02 2015

Formula

If n is divisible by a prime == 2 mod 3 then a(n) = n(p+1)/(3p) where p is the smallest such prime divisor; otherwise if n is divisible by 3 then a(n) = n/3; otherwise all prime divisors of n are == 1 mod 3 and a(n) = (n-1)/3.
In particular, a(2n) = n (cf. A211317).
Showing 1-2 of 2 results.