A059590 Numbers obtained by reinterpreting base-2 representation of n in the factorial base: a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1).
0, 1, 2, 3, 6, 7, 8, 9, 24, 25, 26, 27, 30, 31, 32, 33, 120, 121, 122, 123, 126, 127, 128, 129, 144, 145, 146, 147, 150, 151, 152, 153, 720, 721, 722, 723, 726, 727, 728, 729, 744, 745, 746, 747, 750, 751, 752, 753, 840, 841, 842, 843, 846, 847, 848, 849, 864, 865
Offset: 0
Examples
128 is in the sequence since 5! + 3! + 2! = 128. a(22) = 128. a(22) = a(6) + (1 + floor(log(16) / log(2)))! = 8 + 5! = 128. Also, 22 = 10110_2. Therefore, a(22) = 1 * 5! + 0 * 4! + 1 * 3! + 1 + 2! + 0 * 0! = 128. - _David A. Corneth_, Aug 21 2016
Links
- Reinhard Zumkeller (terms 0..500) & Antti Karttunen, Table of n, a(n) for n = 0..8191
- Index entries for sequences related to factorial base representation
- Index entries for sequences related to factorial numbers
Programs
-
Haskell
import Data.List (elemIndices) a059590 n = a059590_list !! n a059590_list = elemIndices 1 $ map a115944 [0..] -- Reinhard Zumkeller, Dec 04 2011
-
Maple
[seq(bin2facbase(j),j=0..64)]; bin2facbase := proc(n) local i; add((floor(n/(2^i)) mod 2)*((i+1)!),i=0..floor_log_2(n)); end; floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end; # next Maple program: a:= n-> (l-> add(l[j]*j!, j=1..nops(l)))(Bits[Split](n)): seq(a(n), n=0..57); # Alois P. Heinz, Aug 12 2025
-
Mathematica
a[n_] := Reverse[id = IntegerDigits[n, 2]].Range[Length[id]]!; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 19 2012, after Philippe Deléham *)
-
PARI
a(n) = if(n>0, a(n-msb(n)) + (1+logint(n,2))!, 0) msb(n) = 2^#binary(n)>>1 {my(b = binary(n)); sum(i=1,#b,b[i]*(#b+1-i)!)} \\ David A. Corneth, Aug 21 2016
-
Python
def facbase(k, f): return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1") def auptoN(N): # terms up to N factorial-base digits; 13 generates b-file f = [factorial(i) for i in range(1, N+1)] return list(facbase(k, f) for k in range(2**N)) print(auptoN(5)) # Michael S. Branicky, Oct 15 2022
Formula
G.f. 1/(1-x) * Sum_{k>=0} (k+1)!*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 24 2003
From Antti Karttunen, Aug 19 2016: (Start)
A275736(a(n)) = n.
(End)
a(n) = a(n - mbs(n)) + (1 + floor(log(n) / log(2)))!. - David A. Corneth, Aug 21 2016
Extensions
Name changed (to emphasize the functional nature of the sequence) with the old definition moved to the comments by Antti Karttunen, Aug 21 2016
Comments