cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211538 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w=2n-2x-y.

Original entry on oeis.org

0, 0, 0, 1, 3, 5, 9, 12, 18, 22, 30, 35, 45, 51, 63, 70, 84, 92, 108, 117, 135, 145, 165, 176, 198, 210, 234, 247, 273, 287, 315, 330, 360, 376, 408, 425, 459, 477, 513, 532, 570, 590, 630, 651, 693, 715, 759, 782, 828, 852, 900, 925, 975, 1001, 1053, 1080, 1134, 1162
Offset: 1

Views

Author

Clark Kimberling, Apr 15 2012

Keywords

Comments

For a guide to related sequences, see A211422.
Partial sums of A029578. - Reinhard Zumkeller, Nov 27 2012

Crossrefs

Cf. A211422.

Programs

  • Haskell
    a211538 n = a211538_list !! (n-1)
    a211538_list = scanl (+) 0 a029578_list
    -- Reinhard Zumkeller, Nov 27 2012
    
  • Magma
    [(6*n^2-26*n+25-(2*n-7)*(-1)^n)/16: n in [1..60]]; // Bruno Berselli, Jun 03 2014
  • Maple
    A211538:=n->(6*n^2-26*n+25-(2*n-7)*(-1)^n)/16: seq(A211538(n), n=1..100); # Wesley Ivan Hurt, May 18 2015
  • Mathematica
    t[n_] := t[n] = Flatten[Table[2 w + 2 x + y - 2 n, {w, n}, {x, n}, {y, n}]]; c[n_] := Count[t[n], 0]; t = Table[c[n], {n, 0, 70}]
    Table[(6*n^2 - 26*n + 25 - (2*n - 7)*(-1)^n)/16, {n, 100}] (* Wesley Ivan Hurt, May 18 2015 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 0, 0, 1, 3}, 70] (* Vincenzo Librandi, May 19 2015 *)

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (6*n^2-26*n+25-(2*n-7)*(-1)^n)/16, from Luce ETIENNE. [Bruno Berselli, Jun 03 2014]
From Wesley Ivan Hurt, May 18 2015: (Start)
G.f.: x^3*(1 + 2 x)/((1 - x)^3*(x + 1)^2).
a(n) = Sum_{i=ceiling((n-3)/2)..n-3} i. (End)