cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211789 Row sums of A211788.

Original entry on oeis.org

1, 2, 9, 50, 310, 2056, 14273, 102410, 753390, 5651948, 43074218, 332553252, 2595442616, 20443630100, 162308182577, 1297503030106, 10435055801110, 84371602316812, 685424273207630, 5592040955107420, 45798007929729828
Offset: 1

Views

Author

Peter Bala, Aug 02 2012

Keywords

Crossrefs

Cf. A211788.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x*(2*x-1)^2/(x-1)^2, {x, 0, 30}], x], x]] (* Vaclav Kotesovec, Nov 05 2017 *)
  • PARI
    N=21; x='x+O('x^(N+1)); Vec(serreverse(x*((1-2*x)/(1-x))^2)) \\ Gheorghe Coserea, Nov 05 2017

Formula

a(n) = Sum_{k = 1..n} A211788(n,k).
G.f. A(x) satisfies: A(x) = x*((1-A(x))/(1-2*A(x)))^2, a(n) = (Sum_{i=0..n-1} 2^i*(-1)^(n-i-1)*binomial(2*n,n-i-1)*binomial(2*n+i-1,2*n-1))/n for n > 0, a(0)=0. [Vladimir Kruchinin, Feb 08 2013]
From Vaclav Kotesovec, Nov 05 2017: (Start)
Recurrence: 4*n*(2*n - 1)*(17*n - 27)*a(n) = (1207*n^3 - 4331*n^2 + 4818*n - 1584)*a(n-1) - 2*(n-3)*(2*n - 3)*(17*n - 10)*a(n-2).
a(n) ~ sqrt(21/sqrt(17)-5) * ((71 + 17*sqrt(17))/16)^n / (sqrt(8*Pi) * n^(3/2)). (End)
a(n+1) = (1/(n+1)) * Sum_{k=0..n} binomial(2*n+k+1,k) * binomial(n-1,n-k). - Seiichi Manyama, Jan 12 2024