cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A369012 Expansion of (1/x) * Series_Reversion( x * (1-x/(1-x))^3 ).

Original entry on oeis.org

1, 3, 18, 133, 1095, 9636, 88718, 843993, 8230671, 81841987, 826641816, 8457710604, 87472494564, 912995025912, 9604763388534, 101736967518497, 1084125909550959, 11614159795566489, 125011746270524690, 1351312626871871661, 14662950224977228047
Offset: 0

Views

Author

Seiichi Manyama, Jan 11 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x/(1-x))^3)/x)
    
  • PARI
    a(n, s=1, t=3, u=-3) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(3*n+k+2,k) * binomial(n-1,n-k).
D-finite with recurrence 96*(3*n+2)*(3*n+1)*(n+1)*a(n) +4*(-4121*n^3 +1922*n^2 -1273*n+124)*a(n-1) +4*(20588*n^3 -76648*n^2 +98677*n -43586)*a(n-2) +(-90073*n^3 +671565*n^2 -1665278*n +1375320)*a(n-3) +210*(n-4)*(3*n-7) *(3*n-8)*a(n-4)=0. - R. J. Mathar, Jan 25 2024
From Seiichi Manyama, Dec 02 2024: (Start)
G.f.: exp( Sum_{k>=1} A378612(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x/(1 - x))^(3*(n+1)).
G.f.: B(x)^3 where B(x) is the g.f. of A243659.
a(n) = 3 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(3*n+k+3,n)/(3*n+k+3). (End)

A286785 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 2, 5, 2, 14, 14, 2, 42, 72, 27, 2, 132, 330, 220, 44, 2, 429, 1430, 1430, 520, 65, 2, 1430, 6006, 8190, 4550, 1050, 90, 2, 4862, 24752, 43316, 33320, 11900, 1904, 119, 2, 16796, 100776, 217056, 217056, 108528, 27132, 3192, 152, 2, 58786, 406980, 1046520, 1302336, 854658, 301644, 55860, 5040, 189, 2, 208012, 1634380, 4903140, 7354710, 6056820, 2826516, 743820, 106260, 7590, 230, 2
Offset: 0

Views

Author

Gheorghe Coserea, May 15 2017

Keywords

Comments

Row n>0 contains n terms.
T(n,k) is the number of Feynman's diagrams with k fermionic loops in the order n of the perturbative expansion in dimension zero for the GW approximation of the polarization function in a many-body theory of fermions with two-body interaction (see Molinari link).

Examples

			A(x;t) = 1 + 2*x + (5 + 2*t)*x^2 + (14 + 14*t + 2*t^2)*x^3 + ...
Triangle starts:
   n\k |     0       1       2       3       4      5     6    7  8
  -----+-----------------------------------------------------------
   0   |     1;
   1   |     2;
   2   |     5,      2;
   3   |    14,     14,      2;
   4   |    42,     72,     27,      2;
   5   |   132,    330,    220,     44,      2;
   6   |   429,   1430,   1430,    520,     65,     2;
   7   |  1430,   6006,   8190,   4550,   1050,    90,    2;
   8   |  4862,  24752,  43316,  33320,  11900,  1904,  119,   2;
   9   | 16796, 100776, 217056, 217056, 108528, 27132, 3192, 152, 2;
		

Crossrefs

Programs

  • Maxima
    T(n,k):=(binomial(n-1,k)*binomial(2*(n+1),n-k))/(n+1); /* Vladimir Kruchinin, Jan 14 2022 */
  • PARI
    A286784_ser(N,t='t) = my(x='x+O('x^N)); serreverse(Ser(x*(1-x)^2/(1+(t-1)*x)))/x;
    A286785_ser(N,t='t) = 1/(1-x*A286784_ser(N,t))^2;
    concat(apply(p->Vecrev(p), Vec(A286785_ser(12))))
    

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n = 1/(1-x*s)^2, where s(x;t) = A286784(x;t) and P_n(t) = Sum_{k=0..n-1} T(n,k)*t^k for n>0.
A000108(n+1) = T(n,0), A002058(n+3) = T(n,1), A014106(n-1) = T(n,n-2), A006013(n) = P_n(1), A211789(n+1) = P_n(2).
T(n,k) = C(n-1,k)*C(2*n+2,n-k)/(n+1). - Vladimir Kruchinin, Jan 14 2022

A369011 Expansion of (1/x) * Series_Reversion( x * (1-x^3/(1-x))^2 ).

Original entry on oeis.org

1, 0, 0, 2, 2, 2, 17, 36, 59, 240, 669, 1452, 4538, 13574, 34505, 99816, 299112, 825768, 2364715, 7023466, 20182611, 58327250, 172491553, 505163444, 1476966513, 4370772096, 12924382671, 38149522136, 113266357609, 336894290910, 1001473479313, 2985508193930
Offset: 0

Views

Author

Seiichi Manyama, Jan 11 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1-x^3/(1-x))^2)/x)
    
  • PARI
    a(n, s=3, t=2, u=-2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+k+1,k) * binomial(n-2*k-1,n-3*k).

A368957 Expansion of (1/x) * Series_Reversion( x * (1-x^2/(1-x))^2 ).

Original entry on oeis.org

1, 0, 2, 2, 13, 28, 127, 376, 1522, 5210, 20403, 74952, 292313, 1114704, 4371839, 17040586, 67378981, 266402370, 1061919289, 4241539218, 17030430061, 68554148388, 276988107861, 1121954081852, 4557637048543, 18556386241468, 75729621399950
Offset: 0

Views

Author

Seiichi Manyama, Jan 11 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x^2/(1-x))^2)/x)
    
  • PARI
    a(n, s=2, t=2, u=-2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(n-k-1,n-2*k).
D-finite with recurrence 2000*n*(48911424697856946605*n -85862091501967897127)*(2*n+1) *(2*n-1)*(n+1)*a(n) +20*n*(2*n-1) *(9782284939571389321000*n^3 -124853950521493511435497*n^2 +291346534864358121613940*n -174094174192357320452243)*a(n-1) +6*(-1056620466555214160730036*n^5 +5240184994626612582867927*n^4 -10842595636486250859803566*n^3 +12555800263623324081669713*n^2 -8323849827256795107408998*n +2408908212964334471344960)*a(n-2) +(-11765946248792268093670721*n^5 +111908835475719217483707009*n^4 -409273054609037480568616913*n^3 +706828511197147489881004671*n^2 -556026097737885029117618846*n +145005575225258917734060720)*a(n-3) +12*(110108843793156901781209*n^5 -1706708924562157727758594*n^4 +10728825545391547292463142*n^3 -34121900584137543620498771*n^2+54762746448568812780284884*n -35381689886652975706836240)*a(n-4) -36*(3*n-11)*(n-4)*(3*n-13) *(2*n-7)*(36626509829570139536*n -97211536327074911575)*a(n-5)=0. - R. J. Mathar, Jan 25 2024

A378610 Expansion of (1/x) * Series_Reversion( x * (1 - x/(1 - x))^4 ).

Original entry on oeis.org

1, 4, 30, 276, 2825, 30884, 353108, 4170500, 50485764, 623084056, 7810707894, 99175174284, 1272856327470, 16486135484248, 215212582153840, 2828658852385572, 37401956484705132, 497174193516767600, 6640063367021736728, 89058042321373540912, 1199031374607501831273
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x/(1-x))^4)/x)
    
  • PARI
    a(n, s=1, t=4, u=-4) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

G.f.: exp( Sum_{k>=1} A378613(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x/(1 - x))^(4*(n+1)).
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(4*n+k+3,k) * binomial(n-1,n-k).
G.f.: B(x)^4 where B(x) is the g.f. of A243667.
a(n) = 4 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(4*n+k+4,n)/(4*n+k+4).

A211788 Triangle enumerating certain two-line arrays of positive integers.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 7, 21, 21, 1, 10, 47, 126, 126, 1, 13, 82, 324, 818, 818, 1, 16, 126, 642, 2300, 5594, 5594, 1, 19, 179, 1107, 4977, 16741, 39693, 39693, 1, 22, 241, 1746, 9335, 38642, 124383, 289510, 289510, 1, 25, 312, 2586, 15941, 77273, 301630, 939880, 2157150, 2157150
Offset: 1

Views

Author

Peter Bala, Aug 02 2012

Keywords

Comments

This is the table of f(n,k) in the notation of Carlitz (p.123). The triangle enumerates two-line arrays of positive integers
............a_1 a_2 ... a_n..........
............b_1 b_2 ... b_n..........
such that
1) max(a_i, b_i) <= min(a_(i+1), b_(i+1)) for 1 <= i <= n-1
2) max(a_i, b_i) <= i for 1 <= i <= n
3) a_n = b_n = k.
See A071948 and A193091 for other two-line array enumerations.
It appears that the row reverse array is the Riordan array (f(x), g(x)), where f(x) = 1 + x + 4*x^2 + 21*x^3 + 126*x^4 + 818*x^5 + ... is the g.f. of A003168 and g(x) = x + 3*x^2 + 14*x^3 + 79*x^4 + 494*x^5 + 3294*x^6 + ... is the g.f. of A003169. - Peter Bala, Nov 26 2024

Examples

			Triangle begins
.n\k.|..1....2....3....4....5....6
= = = = = = = = = = = = = = = = = =
..1..|..1
..2..|..1....1
..3..|..1....4....4
..4..|..1....7...21...21
..5..|..1...10...47..126..126
..6..|..1...13...82..324..818..818
...
T(4,2) = 7: The 7 two-line arrays are
...1 1 1 2....1 1 2 2....1 2 2 2....1 1 1 2
...1 1 1 2....1 1 2 2....1 2 2 2....1 1 2 2
...........................................
...1 1 2 2....1 1 2 2....1 2 2 2...........
...1 1 1 2....1 2 2 2....1 1 2 2...........
		

Crossrefs

Cf. A003168 (main diagonal), A211789 (row sums).

Formula

Recurrence equation:
T(1,1) = 1; T(n,n) = T(n,n-1); T(n+1,k) = Sum_{j = 1..k} (2*k-2*j+1)*T(n,j) for 1 <= k <= n.
T(n+1,k+1) = (1/n) * ((n - k)*Sum_{i = 0..k} C(n, k-i)*C(2*n+i, i) + Sum_{i = 1..k} C(n, k-i)*C(2*n+i, i-1)).
Row reverse has production matrix
1 1
3 3 1
5 5 3 1
7 7 5 3 1
...
Main diagonal T(n,n) = A003168(n). Row sums A211789.

A371581 G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) / (1 - x*A(x)) )^2.

Original entry on oeis.org

1, 2, 13, 108, 1018, 10352, 110724, 1227752, 13986369, 162708728, 1924866345, 23085868814, 280060995369, 3430479393210, 42369377446083, 527064922683286, 6597825455023465, 83050276697808472, 1050551595788997356, 13347641275527720048, 170259412138463630535
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=5, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A365192.

A378611 a(n) = Sum_{k=0..n} binomial(2*n+k-1,k) * binomial(n-1,n-k).

Original entry on oeis.org

1, 2, 14, 104, 806, 6412, 51908, 425476, 3520070, 29332940, 245841284, 2070093632, 17499188924, 148414157816, 1262280506144, 10762045739644, 91951462167110, 787113739061260, 6749009521216052, 57954807274992208, 498334047795436276, 4290199618047230824
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+k-1, k)*binomial(n-1, n-k));

Formula

a(n) = [x^n] 1/(1 - x/(1 - x))^(2*n).
a(n) = (1/2)^n * [x^(2*n)] 2/(1 - x/(1 - x))^n for n > 0.
a(n) = 2 * A259554(n) for n > 0.

A378668 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^2/(1 - x*A(x)^2) )^2.

Original entry on oeis.org

1, 2, 13, 112, 1104, 11778, 132374, 1543740, 18505996, 226632616, 2823110349, 35659080952, 455652487060, 5879489288828, 76502741016012, 1002670573618324, 13224761472453756, 175404372357915096, 2338003752387818372, 31302169754776944512, 420760252068869028028
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, 2^k*(-1)^(n-k)*binomial(n, k)*binomial(4*n+k+2, n)/(4*n+k+2));
    
  • PARI
    a(n, r=2, s=1, t=5, u=4) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f.: exp( 1/2 * Sum_{k>=1} A378613(k) * x^k/k ).
G.f.: B(x)^2 where B(x) is the g.f. of A243667.
a(n) = 2 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(4*n+k+2,n)/(4*n+k+2).
a(n) = 2 * Sum_{k=0..n} binomial(4*n+k+2,k) * binomial(n-1,n-k)/(4*n+k+2).
G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(5/2)/(1 - x*A(x)^2) )^2.

A371582 G.f. satisfies A(x) = ( 1 + x*A(x)^3 / (1 - x*A(x)) )^2.

Original entry on oeis.org

1, 2, 15, 146, 1623, 19526, 247516, 3256118, 44037023, 608484766, 8552832116, 121908218724, 1757915510695, 25598937436696, 375916184707142, 5560517754432772, 82774606577536376, 1239110145377709862, 18641533742708676711, 281697878640036748684
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=6, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
Showing 1-10 of 11 results. Next