A212168 Numbers n such that the maximal exponent in its prime factorization is less than the number of positive exponents (A051903(n) < A001221(n)).
6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140, 141, 142, 143
Offset: 1
Keywords
Examples
10 = 2^1*5^1 has 2 distinct prime factors, hence 2 positive exponents in its prime factorization (although the 1s are often left implicit). 2 is larger than the maximal exponent in 10's prime factorization, which is 1. Therefore, 10 belongs to the sequence.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Primefan, The First 2500 Integers Factored (first of 5 pages)
Programs
-
Haskell
import Data.List (findIndices) a212168 n = a212168_list !! (n-1) a212168_list = map (+ 1) $ findIndices (> 0) a225230_list -- Reinhard Zumkeller, May 03 2013
-
Mathematica
okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] < Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *) Select[Range[200],Max[FactorInteger[#][[All,2]]]
Harvey P. Dale, Nov 21 2018 *) -
PARI
is(n,f=factor(n))=my(e=f[,2]); #e && vecmax(e)<#e \\ Charles R Greathouse IV, Jan 09 2022
Comments