cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212181 Largest odd divisor of tau(n): a(n) = A000265(A000005(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1, 1
Offset: 1

Views

Author

Matthew Vandermast, Jun 04 2012

Keywords

Comments

Completely determined by the exponents >=2 in the prime factorization of n (cf. A212172).
Not the same as the number of odd divisors of n (A001227(n)); see example.
Multiplicative because A000005 is multiplicative and A000265 is completely multiplicative. - Andrew Howroyd, Aug 01 2018
a(n) = 1 iff the number of divisors of n is a power of 2 (A036537). - Bernard Schott, Nov 04 2022

Examples

			48 has a total of 10 divisors (1, 2, 3, 4, 6, 8, 12, 16, 24 and 48). Since the largest odd divisor of 10 is 5, a(48) = 5.
		

Crossrefs

Cf. A000005, A000079, A000265, A036537, A108951, A212172, A295664, A331286 (applied to primorial inflation of n).

Programs

  • Mathematica
    Table[Block[{nd=DivisorSigma[0, n]}, nd/2^IntegerExponent[nd, 2]], {n, 100}] (* Indranil Ghosh, Jul 19 2017, after PARI code *)
  • PARI
    a(n) = my(nd = numdiv(n)); nd/2^valuation(nd, 2); \\ Michel Marcus, Jul 19 2017
    
  • Python
    from sympy import divisor_count, divisors
    def a(n): return [i for i in divisors(divisor_count(n)) if i%2][-1]
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 19 2017

Formula

a(n) = A000265(A000005(n)).
From Antti Karttunen, Jan 14 2020: (Start)
a(n) = A000005(n) / A000079(A295664(n)).
a(A108951(n)) = A331286(n).
(End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p odd prime} ((1 - 1/p)*(1 + Sum_{k>=1} a(k+1)/p^k)) = 2.076325817863586... . - Amiram Eldar, Oct 15 2022