cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212337 Expansion of 1/(1-4*x+3*x^2)^2.

Original entry on oeis.org

1, 8, 42, 184, 731, 2736, 9844, 34448, 118101, 398584, 1328606, 4384392, 14348911, 46633952, 150663528, 484275616, 1549681961, 4939611240, 15690529810, 49686677720, 156905298051, 494251688848, 1553362450652, 4871909504304, 15251194969981, 47659984281176
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2012

Keywords

Comments

Partial sums of A014915. - Bruno Berselli, Oct 26 2012
Convolution of A003462(n+1) with itself. - Philippe Deléham, Mar 07 2014

Examples

			a(0) = 1*1 = 1;
a(1) = 1*4 + 4*1 = 8;
a(2) = 1*13 + 4*4 + 13*1 = 42;
a(3) = 1*40 + 4*13 + 13*4 + 40*1 = 184;
a(4) = 1*121 + 4*40 + 13*13 + 40*4 + 121*1 = 731; etc. - _Philippe Deléham_, Mar 07 2014
		

Crossrefs

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^2*(1-3*x)^2))); // Bruno Berselli, May 11 2012
    
  • Mathematica
    Table[1 + n ((1 + 9 3^n)/4), {n, 0, 25}] (* Bruno Berselli, May 11 2012 *)
    CoefficientList[Series[1/(1-4x+3x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[ {8,-22,24,-9},{1,8,42,184},30] (* Harvey P. Dale, Jun 14 2020 *)
  • PARI
    Vec(1/(1-4*x+3*x^2)^2 + O(x^100)) \\ Altug Alkan, Nov 01 2015

Formula

From Bruno Berselli, May 11 2012: (Start)
G.f.: 1/((1-x)^2*(1-3*x)^2).
a(n) = 1+n*(1+9*3^n)/4. (End)
E.g.f.: exp(x)*(4 + x + 27*exp(2*x)*x)/4. - Stefano Spezia, May 14 2024