cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212385 Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 5).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 464, 943, 1873, 3914, 9101, 23298, 61915, 162283, 409888, 996456, 2360486, 5555333, 13244114, 32357022, 80958851, 205389082, 522000262, 1317987172, 3297123652, 8190326857, 20302864970, 50482613327, 126318440989
Offset: 0

Views

Author

Alois P. Heinz, May 12 2012

Keywords

Comments

Lengths of descents are unrestricted.
The radius of convergence of g.f. A(x) is r = 5*(1-2*s+s^2)/(s*(5*s-4)) = 0.3804593157188..., where s = A(r) is described below. - Vaclav Kotesovec, Mar 20 2014

Examples

			a(0) = 1: the empty path.
a(1) = 1: UD.
a(6) = 2: UDUDUDUDUDUD, UUUUUUDDDDDD.
a(7) = 8: UDUDUDUDUDUDUD, UDUUUUUUDDDDDD, UUUUUUDDDDDDUD, UUUUUUDDDDDUDD, UUUUUUDDDDUDDD, UUUUUUDDDUDDDD, UUUUUUDDUDDDDD, UUUUUUDUDDDDDD.
		

Crossrefs

Column k=5 of A212382.

Programs

  • Maple
    b:= proc(x, y, u) option remember;
          `if`(x<0 or y b(n$2, true):
    seq(a(n), n=0..40);
    # second Maple program
    a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^5), A), x, n+1), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    b[x_, y_, u_] := b[x, y, u] = If[x<0 || yJean-François Alcover, Feb 05 2015, after Alois P. Heinz *)
  • Maxima
    a(n):=sum(binomial(4*k-3*n-1, n-k)*binomial(n+1, 5*k-4*n), k, 0, n)/(n+1); /* Vladimir Kruchinin, Mar 05 2016 */
    
  • PARI
    a(n) = sum(k=0, n, binomial(4*k-3*n-1,n-k)*binomial(n+1,5*k-4*n))/(n+1); \\ Michel Marcus, Mar 05 2016

Formula

G.f. satisfies: A(x) = 1+x*A(x)/(1-(x*A(x))^5).
Representation in terms of special values of generalized hypergeometric function of type 12F11: a(n) = hypergeom([1/7, 2/7, 3/7, 4/7, 5/7, 6/7, -(1/6)*n, -(1/6)*n+5/6, -(1/6)*n+2/3, -(1/6)*n+1/2, -(1/6)*n+1/3, 1/6-(1/6)*n], [1/6, 1/3, 1/3, 1/2, 1/2, 2/3, 2/3, 5/6, 5/6, 1, 7/6], 7^7/6^6), n>=0. - Karol A. Penson, Jun 21 2013
a(n) ~ s^(n+3/2) * (5*s-4)^(n+2) / (2 * sqrt(Pi) * sqrt(3*s-2) * n^(3/2) * 5^(n+5/2) * (s-1)^(2*n+9/2)), where s = 1.87696911628429... is the root of the equation 2869 - 29970*s + 138225*s^2 - 373000*s^3 + 655625*s^4 - 787500*s^5 + 656250*s^6 - 375000*s^7 + 140625*s^8 - 31250*s^9 + 3125*s^10 = 0. - Vaclav Kotesovec, Mar 20 2014
a(n) = Sum_{k=0..n}(binomial(4*k-3*n-1,n-k)*binomial(n+1,5*k-4*n))/(n+1). - Vladimir Kruchinin, Mar 05 2016