cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212428 a(n) = 18*n + A000217(n-1).

Original entry on oeis.org

0, 18, 37, 57, 78, 100, 123, 147, 172, 198, 225, 253, 282, 312, 343, 375, 408, 442, 477, 513, 550, 588, 627, 667, 708, 750, 793, 837, 882, 928, 975, 1023, 1072, 1122, 1173, 1225, 1278, 1332, 1387, 1443, 1500, 1558, 1617, 1677, 1738, 1800, 1863, 1927, 1992, 2058
Offset: 0

Views

Author

Jesse Han, May 16 2012

Keywords

Comments

Generalization: T(n,i) = A000217(i-1+n) - A000217(i-1) = i*n + A000217(n-1) (corrected by Zak Seidov, Jun 21 2012); in this case is i=18.
For i = 11..16, Milan Janjic observed that if we define f(n,b,i) = Sum_{k=0..n-b} binomial(n,k)*Stirling1(n-k,b)*Product_{j=0..k-1} (-i - j), then T(n-1,i) = -f(n,n-1,i) for n >= 1.

Crossrefs

Programs

  • Magma
    [n*(n+35)/2: n in [0..48]]; // Bruno Berselli, Jun 21 2012
    
  • Mathematica
    Table[-18 (18 - 1)/2 + (18 + n) (17 + n)/2, {n, 0, 100}]
    LinearRecurrence[{3,-3,1},{0,18,37},60] (* Harvey P. Dale, Jun 09 2024 *)
  • PARI
    a(n)=n*(n+35)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (17+n)*(18+n)/2 - 17*18/2 = 18*n + (n-1)*n/2 = n*(n+35)/2.
G.f.: x*(18-17*x)/(1-x)^3. - Bruno Berselli, Jun 21 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 10 2012
a(n) = 18*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
From Amiram Eldar, Jan 11 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(35)/(35*A002805(35)) = 54437269998109/229732925058000.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/35 - 102126365345729/2527062175638000. (End)
E.g.f.: exp(x)*x*(36 + x)/2. - Elmo R. Oliveira, Dec 12 2024