cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212500 a(n) is the difference between multiples of 5 with even and odd digit sum in base 4 in interval [0,4^n).

Original entry on oeis.org

1, 4, 7, 36, 65, 340, 615, 3220, 5825, 30500, 55175, 288900, 522625, 2736500, 4950375, 25920500, 46890625, 245522500, 444154375, 2325622500, 4207090625, 22028612500, 39850134375, 208658012500, 377465890625, 1976437062500, 3575408234375
Offset: 1

Views

Author

Keywords

Comments

Let the term "transform" mean the operation of summing the products of the numbers in the n-th row of an m-nomial triangle (m-nomial T(n,k)) and the ascending numbers of a sequence. And let T(0,0) be the top entry (0th row, 0th column) in an m-nomial triangle. Then starting with a(1)=1, the bisection of this sequence (1,7,65,615,5825...) is the quadrinomial (4-nomial) transform of A000045 (Fibonacci sequence, F(j)), starting at T(0,0)=1, F(1)=1. - Bob Selcoe, May 24 2014

Examples

			Let n=3. In interval [0,4^3) we have 13 multiples of 5,from which in base 4 only three (namely, 35,50,55) have odd digit sums. Thus a(3)=(13-3)-3=7.
From _Bob Selcoe_, May 28 2014: (Start)
n=2: a(5)=65 because T(2,k) {k=0..6} is {1,2,3,4,3,2,1} and {j=1..7} is {1,1,2,3,5,8,13}: 1*1 + 2*1 + 3*2 + 4*3 + 3*5 + 2*8 + 1*13 = 65.
n=3: a(7)=615 because T(3,k) {k=0..9} is {1,3,6,10,12,12,10,6,3,1} and {j=1..10} is {1,1,2,3,5,8,13,21,34,55}: 1*1 + 3*1 + 6*2 + 10*3 + 12*5 + 12*8 + 10*13 + 6*21 + 3*34 + 1*55 = 615. (End)
		

Crossrefs

Cf. A038754, A084990, A189334 (bisection).

Programs

  • Magma
    I:=[1,4,7,36]; [n le 4 select I[n] else 10*Self(n-2)-5*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 17 2014
    
  • Mathematica
    CoefficientList[Series[-(-1 - 4 x + 3 x^2 + 4 x^3)/(1 - 10 x^2 + 5 x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2014 *)
    LinearRecurrence[{0,10,0,-5},{1,4,7,36},30] (* Harvey P. Dale, Apr 07 2019 *)
  • PARI
    Vec(-x*(-1-4*x+3*x^2+4*x^3)/(1-10*x^2+5*x^4) + O(x^30)) \\ Michel Marcus, Feb 06 2016

Formula

For n>=5, a(n) = 10*a(n-2)-5*a(n-4).
a(n) = 0.4*((5+2*sqrt(5))^(n/2)+ (5-2*sqrt(5))^(n/2)) , if n is even, and
a(n) = 0.1*((5+2*sqrt(5))^((n-1)/2)*sqrt(30+10*sqrt(5))+(5-2*sqrt(5))^((n-1)/2)*sqrt(30-10*sqrt(5))), if n is odd.
a(2n+1) = Sum_{j=0..3n+1} fibonacci(j+1)*A008287(n,j). - Bob Selcoe, May 28 2014
G.f.: -x*(-1-4*x+3*x^2+4*x^3) / ( 1-10*x^2+5*x^4 ). - R. J. Mathar, Jun 16 2014