cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A213016 Numbers n such that the sum of prime factors of n (counted with multiplicity) is 3 times a prime.

Original entry on oeis.org

8, 9, 14, 20, 24, 26, 27, 38, 44, 62, 68, 74, 105, 112, 116, 125, 126, 134, 150, 160, 180, 188, 192, 195, 208, 212, 216, 218, 231, 234, 243, 254, 275, 278, 314, 330, 332, 343, 352, 356, 362, 396, 398, 422, 428, 465, 483, 490, 496, 548, 558, 575, 588, 609, 614
Offset: 1

Views

Author

Michel Lagneau, Jun 02 2012

Keywords

Comments

The numbers A100118(n)^3 are in the sequence.

Examples

			44 is in the sequence because 44 = 2^2 * 11 => sum of prime factors = 2*2+11 = 15 = 3*5 where 5 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A:= proc(n) local e, j; e := ifactors(n)[2]: add (e[j][1]*e[j][2], j=1..nops(e)) end: for m from 1 to 3000 do: if type(A(m)/3,prime)= true then printf(`%d, `,m):else fi:od:
  • Mathematica
    L = {}; Do[ww = Transpose[FactorInteger[k]]; w = ww[[1]].ww[[2]]; If[PrimeQ[w/3], AppendTo[L, k]], {k, 2, 1000}]; L
    Select[Range[700],PrimeQ[Total[Times@@@FactorInteger[#]]/3]&] (* Harvey P. Dale, Nov 23 2022 *)

Formula

sopfr(n) = 3*p, p prime.

A213020 Smallest number k such that the sum of prime factors of k (counted with multiplicity) is n times a prime.

Original entry on oeis.org

2, 4, 8, 15, 21, 35, 33, 39, 65, 51, 57, 95, 69, 115, 86, 87, 93, 155, 212, 111, 122, 123, 129, 215, 141, 235, 158, 159, 265, 371, 177, 183, 194, 427, 201, 335, 213, 219, 365, 511, 237, 395, 249, 415, 446, 267, 278, 623, 964, 291, 302, 303, 309, 515, 321, 327
Offset: 1

Views

Author

Michel Lagneau, Jun 02 2012

Keywords

Comments

Smallest k such that sopfr(k) = n*p, p prime.

Examples

			a(19) = 212 because 212 = 2^2 * 53 => sum of prime factors = 2*2+53 = 57 = 19*3 where 3 is prime.
		

Crossrefs

Programs

  • Maple
    sopfr:= proc(n) option remember;
              add(i[1]*i[2], i=ifactors(n)[2])
            end:
    a:= proc(n) local k, p;
          for k from 2 while irem (sopfr(k), n, 'p')>0 or
            not isprime(p) do od; k
        end:
    seq (a(n), n=1..100); # Alois P. Heinz, Jun 03 2012
  • Mathematica
    sopfr[n_] := Sum[Times @@ f, {f, FactorInteger[n]}];
    a[n_] := For[k = 2, True, k++, If[PrimeQ[sopfr[k]/n], Return[k]]];
    Array[a, 100] (* Jean-François Alcover, Nov 13 2020 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(k=1,#f~,f[k,1]*f[k,2]); \\ A001414
    isok(k, n) = my(dr = divrem(sopfr(k), n)); (dr[2]==0) && isprime(dr[1]);
    a(n) = {my(k=2); while (!isok(k, n), k++); k;} \\ Michel Marcus, Nov 13 2020

A271101 Squarefree semiprimes (A006881) whose average prime factor is prime.

Original entry on oeis.org

21, 33, 57, 69, 85, 93, 129, 133, 145, 177, 205, 213, 217, 237, 249, 253, 265, 309, 393, 417, 445, 469, 489, 493, 505, 517, 553, 565, 573, 597, 633, 669, 685, 697, 753, 781, 793, 813, 817, 865, 889, 913, 933, 949, 973, 985, 993, 1057, 1077, 1137, 1149, 1177, 1257, 1273, 1285, 1329
Offset: 1

Views

Author

Antonio Roldán, Mar 30 2016

Keywords

Comments

Sum of factors of a(n) if semiprime (product 2*p, with p prime).
This sequence is subsequence of A006881, A089765, A187073, A108633 and A213015.
This sequence is also subsequence of A045835, because sopfr(omega(a(n))) = omega(sopfr(a(n))): sopfr(omega(a(n)))=sopfr(2)=2, and omega(sopfr(a(n)))=omega(2*p)=2 (p prime, p>2, average prime factor).

Examples

			133 is in the sequence because 133 is a squarefree semiprime: 133=7*19, and (7+19)/2=13, a prime number.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms <= N
    Primes:= select(isprime, [seq(i, i=3..N/3)]):
    SP:= [seq(seq([p, q], q = select(`<=`, Primes, min(p-1, N/p))), p=Primes)]:
    B:= select(t -> isprime((t[1]+t[2])/2), SP):
    sort(map(t -> t[1]*t[2], B)); # Robert Israel, Dec 14 2019
  • Mathematica
    Select[Select[Range@ 1330, SquareFreeQ@ # && PrimeOmega@ # == 2 &], PrimeQ@ Mean[First /@ FactorInteger@ #] &] (* Michael De Vlieger, Mar 30 2016 *)
  • PARI
    sopf(n)= { local(f, s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
    {for (n=6, 2*10^3,  if(bigomega(n)==2&&omega(n)==2, m=sopf(n)/2;if(m==truncate(m),if(isprime(m), print1(n, ", ")))))}
Showing 1-3 of 3 results.