cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A213107 Primes p such that 2p^2-1, 3p^2-2, 4p^2-3, and 5p^2-4 are also prime.

Original entry on oeis.org

17569, 43781, 70321, 229561, 251231, 426131, 426551, 453289, 635051, 727201, 729791, 741709, 944689, 981091, 1015309, 1078081, 1128761, 1228429, 1231229, 1282961, 1289149, 1302349, 1351099, 1723481, 1763159, 1823779, 2078339, 2260889, 2336519, 2357879
Offset: 1

Views

Author

Zak Seidov, Jun 05 2012

Keywords

Comments

Subsequence of A213079: a(1) = 17569 = A213079(10) =A213078(44)= A106483(389) = A000040(2019).

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500000) | forall{i*p^2-i+1: i in [2..5] | IsPrime(i*p^2-i+1)}]; // Vincenzo Librandi, Apr 08 2013
  • Mathematica
    Select[Prime[Range[200000]], PrimeQ[2 #^2 - 1] && PrimeQ[3 #^2 - 2] && PrimeQ[4 #^2 - 3] && PrimeQ[5 #^2 - 4] &] (* T. D. Noe, Jun 06 2012 *)

A213125 Primes p such that 2p^2-1, 3p^2-2, 4p^2-3, 5p^2-4 and 6p^2-5 are also prime.

Original entry on oeis.org

981091, 2260889, 3553271, 3918251, 6038551, 9499279, 10310761, 12377429, 13670719, 13783139, 14881649, 15480529, 18114461, 18727199, 20418341, 21793829, 24170089, 25276649, 30814321, 36104069, 49319579, 52650599, 63485311, 73614031, 76141591, 77646199, 87177089
Offset: 1

Views

Author

Zak Seidov, Jun 05 2012

Keywords

Comments

Subsequence of A213107:
a(1)=981091=A213107(14)=A213079(148)=A213078(970)==A106483(10205)=A000040(77144).

Crossrefs

A213159 Primes p such that (k+1)*p^2-k are prime for k=1..6.

Original entry on oeis.org

3918251, 18727199, 395564539, 397687709, 503720279, 873201911, 1088927209, 1329433951, 2108335769, 2376506131, 3684190621, 3728773019, 3934099049, 3971294419, 4272771301, 5047170421, 5091014389, 5380213021, 6187560259, 6219076681, 7243803841, 8309591011, 8448425231
Offset: 1

Views

Author

Zak Seidov, Jun 06 2012

Keywords

Comments

Subsequence of A213125: a(1)=A213125(4), a(2)=A213125(14),
a(3)=A213125(60).

Crossrefs

A213161 Primes p such that (k+1)*p^2-k are prime for k=1..7.

Original entry on oeis.org

1329433951, 25778112821, 75902670689, 80358496679, 84005465699, 184273377289, 188745495049, 220260667439, 225830918741, 227706130541, 250232659249, 314987199911, 396580371571, 532375084669, 535798256839, 542604984109, 634725913009, 676837365821, 706769028239
Offset: 1

Views

Author

Zak Seidov, Jun 06 2012

Keywords

Comments

All terms squared are congruent to 1 mod 9240.
More terms: 755943098371, 797370889699, 843028736089, 848657766529, 849148113659, 861950855039, 1035653917759.
Subsequence of A213159: a(1)=A213159(8)=A213125(134).

Crossrefs

A213334 Primes p such that (k+1)*p^2 - k is prime for k=1..8.

Original entry on oeis.org

75902670689, 84005465699, 188745495049, 220260667439, 314987199911, 1970532645509, 2368000666921, 3702971171899, 3886185845431, 4117783215701, 4166366916251, 6213125459729, 7768065083591, 7946042954849, 8788172678669, 11387502711311, 14643617926211
Offset: 1

Views

Author

Zak Seidov, Jun 08 2012

Keywords

Comments

The square of each term is congruent to 1 (mod 9240).
Note that for each p, (k+1)*p^2 - k (k=1..8) gives 8 primes in arithmetic progression with difference d = p^2 - 1.

Crossrefs

Extensions

a(6)-a(17) from Tyler Busby, Jan 09 2023

A213162 Smallest prime p such that (k+1)*p^2-k are prime for k=1..n.

Original entry on oeis.org

2, 199, 409, 17569, 981091, 3918251, 1329433951, 75902670689, 45048280453021
Offset: 1

Views

Author

Zak Seidov, Jun 06 2012

Keywords

Comments

a(1..8) are the first terms correspondingly in A106483, A213078, A213079, A213107, A213125, A213159, A213161, A213334.

Programs

  • PARI
    a(n) = {my(p = 2); until (ok, ok = 1; for (k = 1, n, if (! isprime((k+1)*p^2-k), ok = 0; break;);); if (!ok, p = nextprime(p+1);)); return (p);}  \\ Michel Marcus, Apr 19 2013

Extensions

a(9) from Tyler Busby, Jan 11 2023
Showing 1-6 of 6 results.