A213222 Minimum number of distinct slopes formed by n noncollinear points in the plane.
3, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68, 68, 70, 70, 72, 72, 74, 74, 76, 76, 78, 78, 80, 80, 82, 82, 84
Offset: 3
References
- Martin Aigner and Gunter M. Ziegler, Proofs from THE BOOK, Second Edition, Springer-Verlag, Berlin, 2000. Chapter 10.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- J. E. Goodman and R. Pollack, On the combinatorial classification of nondegenerate configurations in the plane, J. Combin. Theory Ser. A, 29 (1980), pp. 220-235.
- Giovanni Resta, Illustration of terms a(3)-a(7)
- P. R. Scott, On the sets of directions determined by n points, The American Mathematical Monthly 77:5 (1970), pp. 502-505.
- Peter Ungar, 2N noncollinear points determine at least 2N directions, Journal of Combinatorial Theory, Series A, 33:3 (1982), pp. 343-347.
- Eric Weisstein's World of Mathematics, Edge Chromatic Number
- Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[2*Floor(n/2): n in [3..100]]; // Vincenzo Librandi, Mar 29 2014
-
Maple
A213222:=n->`if`(n = 3, 3, 2*floor(n/2)); seq(A213222(n), n=3..100); # Wesley Ivan Hurt, Mar 28 2014
-
Mathematica
CoefficientList[Series[(3 + x - 3 x^2 + x^3)/((1 + x) (1 - x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 29 2014 *) LinearRecurrence[{1,1,-1},{3,4,4,6},100] (* Harvey P. Dale, Dec 29 2024 *)
-
PARI
a(n)=if(n>3,n\2*2,3)
Formula
a(n) = 2*floor(n/2) for n > 3.
G.f.: x^3*(3+x-3*x^2+x^3)/((1+x)*(1-x)^2). [Bruno Berselli, Mar 04 2013]
Comments