cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213222 Minimum number of distinct slopes formed by n noncollinear points in the plane.

Original entry on oeis.org

3, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68, 68, 70, 70, 72, 72, 74, 74, 76, 76, 78, 78, 80, 80, 82, 82, 84
Offset: 3

Views

Author

Keywords

Comments

Scott formulated the problem (on the basis of a similar problem of Erdős), gave bounds, and conjectured the formula which Unger later proved.
Also the edge chromatic number of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 23 2018

References

  • Martin Aigner and Gunter M. Ziegler, Proofs from THE BOOK, Second Edition, Springer-Verlag, Berlin, 2000. Chapter 10.

Crossrefs

Cf. A000217 (maximum number of slopes, with offset 1).

Programs

  • Magma
    [2*Floor(n/2): n in [3..100]]; // Vincenzo Librandi, Mar 29 2014
  • Maple
    A213222:=n->`if`(n = 3, 3, 2*floor(n/2)); seq(A213222(n), n=3..100); # Wesley Ivan Hurt, Mar 28 2014
  • Mathematica
    CoefficientList[Series[(3 + x - 3 x^2 + x^3)/((1 + x) (1 - x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 29 2014 *)
    LinearRecurrence[{1,1,-1},{3,4,4,6},100] (* Harvey P. Dale, Dec 29 2024 *)
  • PARI
    a(n)=if(n>3,n\2*2,3)
    

Formula

a(n) = 2*floor(n/2) for n > 3.
G.f.: x^3*(3+x-3*x^2+x^3)/((1+x)*(1-x)^2). [Bruno Berselli, Mar 04 2013]