cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A127110 n! in base 3.

Original entry on oeis.org

1, 1, 2, 20, 220, 11110, 222200, 20220200, 2001022100, 200102210000, 20211100210000, 2210002222120000, 1020101022210200000, 121001222020102200000, 22100000121100001100000, 11122000100002000202000000, 2202002012101012102212000000, 1201122101101102102110111000000
Offset: 0

Views

Author

Artur Jasinski, Jan 05 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[IntegerDigits[n!,3]],{n,0,17}] (* Stefano Spezia, Aug 25 2022 *)
  • PARI
    a(n) = fromdigits(digits(n!, 3), 10); \\ Michel Marcus, Sep 04 2021

A213858 Least m such that n! <= 4^m.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 38, 40, 42, 45, 47, 49, 52, 54, 57, 59, 62, 64, 67, 70, 72, 75, 77, 80, 83, 85, 88, 91, 94, 96, 99, 102, 105, 108, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 145, 148
Offset: 1

Views

Author

Clark Kimberling, Jul 17 2012

Keywords

Examples

			a(11) = 13 because 4^12 < 11! <= 4^13.
		

Crossrefs

Cf. A213857.

Programs

  • Mathematica
    Ceiling[Log[4,Range[100]!]] (* Harvey P. Dale, Jul 21 2016 *)

Extensions

Corrected (a(1) changed to zero) by Harvey P. Dale, Jul 21 2016

A214047 Least m>0 such that n! <= (3/2)^m.

Original entry on oeis.org

1, 2, 5, 8, 12, 17, 22, 27, 32, 38, 44, 50, 56, 63, 69, 76, 83, 90, 98, 105, 112, 120, 128, 136, 144, 152, 160, 168, 176, 185, 193, 202, 210, 219, 228, 237, 245, 254, 263, 273, 282, 291, 300, 310, 319, 328, 338, 347, 357, 367
Offset: 1

Views

Author

Clark Kimberling, Jul 18 2012

Keywords

Examples

			a(6) = 17 because (3/2)^16 < 6! <= (3/2)^17.
		

Crossrefs

Programs

  • Mathematica
    Table[m=1; While[n!>(3/2)^m, m++]; m, {n,1,100}]
    Join[{1},With[{c=Log[3/2]},Table[Ceiling[Log[n!]/c],{n,2,50}]]] (* Harvey P. Dale, May 15 2013 *)

A214048 Least m>0 such that n! <= r^m, where r = (1+sqrt(5))/2, the golden ratio.

Original entry on oeis.org

1, 2, 4, 7, 10, 14, 18, 23, 27, 32, 37, 42, 47, 53, 58, 64, 70, 76, 82, 88, 95, 101, 108, 114, 121, 128, 135, 142, 149, 156, 163, 170, 177, 185, 192, 199, 207, 214, 222, 230, 237, 245, 253, 261, 269, 277, 285, 293, 301, 309
Offset: 1

Views

Author

Clark Kimberling, Jul 18 2012

Keywords

Comments

Also, the least m>0 such that n! < L(m), where L = A000032, the Lucas numbers.

Examples

			a(4) = 7 because r^6 < 4! <= 4^7.
		

Crossrefs

Programs

  • Mathematica
    Table[m=1; While[n!>GoldenRatio^m, m++]; m, {n,1,100}]
Showing 1-4 of 4 results.