A214706 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=5.
1, 5, 5, 25, 125, 3125, 390625, 1220703125, 476837158203125, 582076609134674072265625, 277555756156289135105907917022705078125, 161558713389263217748322010169914619837072677910327911376953125
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..16
- W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
- P. G. Anderson, T. C. Brown, and P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
- D. Bowman, A new generalization of Davison's theorem, Fib. Quart. Volume 26 (1988), 40-45.
Crossrefs
Programs
-
Magma
[5^Fibonacci(n): n in [0..13]];
-
Maple
a:= n-> 5^(<<1|1>, <1|0>>^n)[1, 2]: seq(a(n), n=0..12); # Alois P. Heinz, Jun 17 2014
-
Mathematica
5^Fibonacci[Range[0,11]] nxt[{a_,b_}]:={b,a*b}; NestList[nxt,{1,5},12][[All,1]] (* Harvey P. Dale, Oct 14 2018 *)
-
SageMath
[5^fibonacci(n) for n in range(15)] # G. C. Greubel, Jan 07 2024
Formula
a(n) = 5^Fibonacci(n).
Comments