A214955 Number of solid standard Young tableaux of shape [[n,n-1],[1]].
1, 6, 25, 98, 378, 1452, 5577, 21450, 82654, 319124, 1234506, 4784276, 18572500, 72209880, 281150505, 1096087770, 4278278070, 16717354500, 65388738030, 256000696380, 1003116947820, 3933750236520, 15437682614250, 60625494924228, 238235373671148, 936735006679752
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- S. B. Ekhad and D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229 [math.CO], 2012.
- Wikipedia, Young tableau.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, 2*(2*n-1)^2*a(n-1)/((n+1)*(2*n-3))) end: seq(a(n), n=1..30);
-
Mathematica
a[n_]:= a[n] = If[n<2, n, 2*(2*n-1)^2*a[n-1]/((n+1)*(2*n-3))]; Array[a, 30] (* Jean-François Alcover, Aug 14 2017, translated from Maple *)
-
PARI
a(n) = (2*n-1) * binomial(2*n,n)/(n+1); \\ Michel Marcus, Mar 06 2022
Formula
a(n) = 2*(2*n-1)^2/((n+1)*(2*n-3)) * a(n-1) for n>1; a(1) = 1.
a(n) = [x^n] x*(1 + 2*x)/(1 - x)^(n+2). - Ilya Gutkovskiy, Oct 12 2017
Sum_{n>=1} 1/a(n) = 1/6 + G + 13*Pi/(36*sqrt(3)) - Pi*log(2+sqrt(3))/8, where G is Catalan's constant (A006752). - Amiram Eldar, Mar 06 2022
From Stefano Spezia, Mar 29 2023: (Start)
O.g.f.: 1 + (3 - 3*sqrt(1 - 4*x) - 8*x)/(2*x*sqrt(1 - 4*x)).
E.g.f.: 1 + exp(2*x)*(3*I_1(2*x) - I_0(2*x)), where I_n(x) is the modified Bessel function of the first kind.
a(n) ~ 2^(1+2*n)/sqrt(n*Pi). (End)
Comments