cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001704 a(n) = n concatenated with n + 1.

Original entry on oeis.org

12, 23, 34, 45, 56, 67, 78, 89, 910, 1011, 1112, 1213, 1314, 1415, 1516, 1617, 1718, 1819, 1920, 2021, 2122, 2223, 2324, 2425, 2526, 2627, 2728, 2829, 2930, 3031, 3132, 3233, 3334, 3435, 3536, 3637, 3738, 3839, 3940, 4041, 4142, 4243, 4344, 4445, 4546
Offset: 1

Views

Author

Keywords

Comments

See A030457 for the indices of prime terms in this sequence. - Reinhard Zumkeller, Jun 27 2015 [Simplified by Jianing Song, Jan 27 2019]

Crossrefs

See A127421 for a version with offset 0.

Programs

  • Haskell
    a001704 n = a001704_list !! (n-1)
    a001704_list = map read (zipWith (++) iss $ tail iss) :: [Integer]
                   where iss = map show [1..]
    -- Reinhard Zumkeller, Oct 07 2014
    
  • Magma
    [Seqint(Intseq(n+1) cat Intseq(n)): n in [1..50]]; // Vincenzo Librandi, Jul 08 2018
    
  • Maple
    f:=proc(i) i*10^(1+floor(evalf(log10(i+1), 10)))+i+1; end: # gives a(n) - N. J. A. Sloane, Aug 04 2012
    # alternative Maple program:
    a:= n-> parse(cat(n, n+1)):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jul 05 2018
  • Mathematica
    Table[FromDigits@Flatten@IntegerDigits[{n, n + 1}], {n, 100}] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    a(n)=eval(Str(n,n+1)) \\ Charles R Greathouse IV, Jul 23 2016
    (Emacs Lisp)
    ;; Concatenation
    (defun A001704 (n) (string-to-int (concat (int-to-string n) (int-to-string (1+ n)))))
    ;; Formula
    (defun A001704 (n) (1+ n (* n (expt 10 (1+ (floor (log (1+ n) 10)))))))
    (mapcar '(lambda (n) (cons n (A001704 n))) '(1 2 3 10 11 12 99 999)) => ((1 . 12) (2 . 23) (3 . 34) (10 . 1011) (11 . 1112) (12 . 1213) (99 . 99100) (999 . 9991000))
    ; Tim Chambers, Jul 07 2018
    
  • Python
    for n in range(1,100): print(str(n)+str(n+1)) # David F. Marrs, Sep 17 2018
    
  • Scala
    val numerStrs = (1 to 50).map(Integer.toString(_)).toList
    val concats = (numerStrs.dropRight(1)) zip (numerStrs.drop(1))
    concats.map(x => Integer.parseInt(x.1 + x._2)) // _Alonso del Arte, Oct 24 2019

Extensions

More terms from Joshua Zucker and Jon E. Schoenfield, May 15 2007

A215028 a(1) = 1; for n >= 1, a(n+1) = (concatenation of n+1 and n) - a(n).

Original entry on oeis.org

1, 20, 12, 31, 23, 42, 34, 53, 45, 64, 1046, 165, 1147, 266, 1248, 367, 1349, 468, 1450, 569, 1551, 670, 1652, 771, 1753, 872, 1854, 973, 1955, 1074, 2056, 1175, 2157, 1276, 2258, 1377, 2359, 1478, 2460, 1579, 2561, 1680, 2662, 1781, 2763, 1882, 2864, 1983
Offset: 1

Views

Author

N. J. A. Sloane, Aug 04 2012

Keywords

Comments

A variation of A215027.

Crossrefs

Programs

  • Maple
    f:=proc(i) (i+1)*10^(1+floor(evalf(log10(i))))+i; end: # A127423
    a:=proc(n) option remember; global f; if n=1 then 1 else f(n-1)-a(n-1); fi; end;
  • PARI
    A215028(n, print_all=0)={my(a=1); for(n=1, n-1, print_all & print1(a","); a=(n+1)*10^#Str(n)+n-a); a} \\ M. F. Hasler, Aug 23 2012

A371144 The smallest number such that the concatenation of n, a(n), n+1 is divisible by the concatenation of n and n+1.

Original entry on oeis.org

3, 5, 7, 0, 37, 76, 48, 98, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 560, 571, 582, 593, 604, 615, 626, 637, 648, 361, 670, 681, 692, 703, 714, 725, 736, 747, 758, 769, 780
Offset: 1

Views

Author

Scott R. Shannon, Mar 12 2024

Keywords

Comments

For n > 10, when n starts with the digits 1, 2, 3, or 4, then a(n) = 2*n + 1. When n starts with the digits 5, 6, 7, or 8, then a(n) = 11*n + 10 for the vast majority of terms, although some outliers exist e.g., a(749) = 2251. When n starts with the digit 9, the values are somewhat more varied.
The maximum possible value for any term is the concatenation of n+1 and n, see the example for a(6) below. However except for a(6) and a(8), for the terms studied this only occurs four times for every order of magnitude increase in n, namely the four numbers consisting of all 9's except for the final digit of 0, 2, 6, or 8.
The first duplicate term is a(5) = a(18) = 37. There are 234 duplicates in the first 10000 terms.

Examples

			a(1) != 1 as "1"+"1"+"2" = 112 is not divisible by "1"+"2" = 12.
a(1) != 2 as "1"+"1"+"2" = 122 is not divisible by "1"+"2" = 12.
a(1) = 3 as "1"+"3"+"2" = 132 is divisible by "1"+"2" = 12.
a(5) = 37 as "5"+"37"+"6" = 5376 is divisible by "5"+"6" = 56.
a(6) = 76 as "6"+"76"+"7" = 6767 is divisible by "6"+"7" = 67. This is the first time the maximum possible value is required.
		

Crossrefs

Showing 1-3 of 3 results.