cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215149 a(n) = n * (1 + 2^(n-1)).

Original entry on oeis.org

0, 2, 6, 15, 36, 85, 198, 455, 1032, 2313, 5130, 11275, 24588, 53261, 114702, 245775, 524304, 1114129, 2359314, 4980755, 10485780, 22020117, 46137366, 96469015, 201326616, 419430425, 872415258, 1811939355, 3758096412, 7784628253, 16106127390, 33285996575, 68719476768, 141733920801, 292057776162
Offset: 0

Views

Author

Paul Curtz, Aug 04 2012

Keywords

Comments

Related to Bernoulli numbers.
Essentially the same as A135854.

Crossrefs

Programs

  • Magma
    [n*(1 + 2^(n-1)): n in [0..40]]; // G. C. Greubel, Apr 19 2018
    
  • Mathematica
    Table[n(1+2^(n-1)),{n,0,40}] (* or *) LinearRecurrence[{6,-13,12,-4},{0,2,6,15}, 40] (* Harvey P. Dale, Oct 18 2013 *)
  • PARI
    a(n) = n*(1+2^(n-1)) \\ Michel Marcus, Mar 10 2013
    
  • Python
    def A215149(n): return n*(pow(2,n)+2)//2
    print([A215149(n) for n in range(41)]) # G. C. Greubel, Jan 18 2025

Formula

a(n) = (A157809(n) - A164555(n)) / A027642(n).
a(n) = n (the nonnegative integers A001477(n)) + n*2^(n-1) (their binomial transform A001787(n)).
a(n+1) - a(n) = 2,4,9,21,... = A001792(n) + 1.
a(n+1) - 2*a(n) = 2 before A132045(n+1).
a(n) is the binomial transform of b(n) = 0,2,2,3,4,5,... = A001477(n) with 2 instead of 1. b(n) = (A164558(n) - A027641(n))/A027642(n)?
G.f.: x*(2-6*x+5*x^2) / ( (1-x)^2*(1-2*x)^2 ). - R. J. Mathar, Aug 06 2012
E.g.f.: x*exp(x)*(1 + exp(x)). - G. C. Greubel, Jan 18 2025
a(n) = n * A094373(n). - Alois P. Heinz, Jan 18 2025