A215272 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=9.
1, 9, 9, 81, 729, 59049, 43046721, 2541865828329, 109418989131512359209, 278128389443693511257285776231761, 30432527221704537086371993251530170531786747066637049
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..15
- W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
- P. G. Anderson, T. C. Brown, P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity, Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
- D. Bowman, A new generalization of Davison's theorem, Fib. Quart. Volume 26 (1988), 40-45
Crossrefs
Programs
-
Magma
[9^Fibonacci(n): n in [0..10]];
-
Maple
a:= n-> 9^(<<1|1>, <1|0>>^n)[1, 2]: seq(a(n), n=0..12); # Alois P. Heinz, Jun 17 2014
-
Mathematica
RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == a[n - 1] a[n - 2]}, a[n], {n, 0, 15}]
-
PARI
a(n) = 9^fibonacci(n); \\ Jinyuan Wang, Apr 06 2019
Formula
a(n) = 9^Fibonacci(n).
Comments