A215421 Primes that remain prime when a single digit 9 is inserted between any two consecutive digits or as the leading or trailing digit.
7, 19, 37, 41, 199, 239, 311, 587, 661, 941, 967, 1009, 1997, 4993, 4999, 5393, 5651, 6911, 9109, 9397, 9679, 9829, 19417, 20233, 22549, 27397, 29389, 31387, 39989, 71419, 71569, 90599, 91951, 95369, 97103, 98909, 99023, 160009, 225919, 267389, 313991, 328849
Offset: 1
Examples
31387 is prime and also 313879, 313897, 313987, 319387, 391387, 931387.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..100
Programs
-
Maple
A215421:=proc(q,x) local a,b,c,d,i,n,ok; for n from 1 to q do a:=ithprime(n); b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n); ok:=1; for i from 0 to b do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(ithprime(n)); fi; od; end: A215421(1000,9);
-
Mathematica
Select[Prime[Range[30000]],AllTrue[FromDigits/@Table[Insert[ IntegerDigits[ #],9,n],{n, IntegerLength[ #]+1}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 22 2016 *)
Comments