A215465 a(n) = (Lucas(4n) - Lucas(2n))/4.
0, 1, 10, 76, 540, 3751, 25840, 177451, 1217160, 8344876, 57202750, 392089501, 2687463360, 18420257701, 126254611990, 865362736876, 5931286406640, 40653646980451, 278644255208560, 1909856172864751, 13090349042248500
Offset: 0
Examples
a(3) = 76 because the 12th (4 * 3rd) Lucas number is 22, the 6th (2 * 3rd) Lucas number is 18, and (322 - 18)/4 = 304/4 = 76.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Peter Bala, Lucas sequences and divisibility sequences
- E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5.
- Hugh Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277
- Index entries for linear recurrences with constant coefficients, signature (10,-23,10,-1).
Programs
-
Magma
[(Lucas(4*n) - Lucas(2*n))/4: n in [0..20]]; // Vincenzo Librandi, Dec 23 2012
-
Maple
A215465 := proc(n) (A000032(4*n)-A000032(2*n))/4 ; end proc:
-
Mathematica
Table[(LucasL[4n] - LucasL[2n])/4, {n, 0, 19}] (* Alonso del Arte, Aug 11 2012 *) CoefficientList[Series[-x*(x-1)*(1+x)/((x^2 - 7*x + 1)* (x^2 - 3*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *) LinearRecurrence[{10,-23,10,-1},{0,1,10,76},50] (* G. C. Greubel, Jun 02 2016 *)
-
PARI
{a(n) = my(w = quadgen(5)^(2*n)); (2*real(w^2-w) + imag(w^2-w))/4}; /* Michael Somos, Dec 29 2022 */
Formula
G.f.: -x*(x-1)*(1+x) / ( (x^2-7*x+1)*(x^2-3*x+1) ).
a(n) = 10*a(n-1) - 23*a(n-2) + 10*a(n-3) - a(n-4). - G. C. Greubel, Jun 02 2016
a(n) = 2^(-2-n)*((7-3*sqrt(5))^n-(3-sqrt(5))^n-(3+sqrt(5))^n+(7+3*sqrt(5))^n). - Colin Barker, Jun 02 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Dec 29 2022
Comments