cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215465 a(n) = (Lucas(4n) - Lucas(2n))/4.

Original entry on oeis.org

0, 1, 10, 76, 540, 3751, 25840, 177451, 1217160, 8344876, 57202750, 392089501, 2687463360, 18420257701, 126254611990, 865362736876, 5931286406640, 40653646980451, 278644255208560, 1909856172864751, 13090349042248500
Offset: 0

Views

Author

R. J. Mathar, Aug 11 2012

Keywords

Comments

This is a divisibility sequence, that is, if n | m then a(n) | a(m). However, it is not a strong divisibility sequence. It is the case k = 3 of a 1-parameter family of 4th-order linear divisibility sequences with o.g.f. x*(1 - x^2)/( (1 - k*x + x^2)*(1 - (k^2 - 2)*x + x^2) ). Compare with A000290 (case k = 2) and A085695 (case k = -3). - Peter Bala, Jan 17 2014
In general, for distinct integers r and s with r = s (mod 2), the sequence Lucas(r*n) - Lucas(s*n) is a fourth-order divisibility sequence. See A273622 for the case r = 3, s = 1. - Peter Bala, May 27 2016

Examples

			a(3) = 76 because the 12th (4 * 3rd) Lucas number is 22, the 6th (2 * 3rd) Lucas number is 18, and (322 - 18)/4 = 304/4 = 76.
		

Crossrefs

Programs

  • Magma
    [(Lucas(4*n) - Lucas(2*n))/4: n in [0..20]]; // Vincenzo Librandi, Dec 23 2012
    
  • Maple
    A215465 := proc(n)
        (A000032(4*n)-A000032(2*n))/4 ;
    end proc:
  • Mathematica
    Table[(LucasL[4n] - LucasL[2n])/4, {n, 0, 19}] (* Alonso del Arte, Aug 11 2012 *)
    CoefficientList[Series[-x*(x-1)*(1+x)/((x^2 - 7*x + 1)* (x^2 - 3*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *)
    LinearRecurrence[{10,-23,10,-1},{0,1,10,76},50] (* G. C. Greubel, Jun 02 2016 *)
  • PARI
    {a(n) = my(w = quadgen(5)^(2*n)); (2*real(w^2-w) + imag(w^2-w))/4}; /* Michael Somos, Dec 29 2022 */

Formula

4*a(n) = A000032(4*n) - A000032(2*n).
a(n) = A056854(n)/4 - A005248(n)/4.
G.f.: -x*(x-1)*(1+x) / ( (x^2-7*x+1)*(x^2-3*x+1) ).
a(n) = 10*a(n-1) - 23*a(n-2) + 10*a(n-3) - a(n-4). - G. C. Greubel, Jun 02 2016
a(n) = 2^(-2-n)*((7-3*sqrt(5))^n-(3-sqrt(5))^n-(3+sqrt(5))^n+(7+3*sqrt(5))^n). - Colin Barker, Jun 02 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Dec 29 2022