cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215573 a(n) = n*(n+1)*(2n+1)/6 modulo n.

Original entry on oeis.org

0, 1, 2, 2, 0, 1, 0, 4, 6, 5, 0, 2, 0, 7, 10, 8, 0, 3, 0, 10, 14, 11, 0, 4, 0, 13, 18, 14, 0, 5, 0, 16, 22, 17, 0, 6, 0, 19, 26, 20, 0, 7, 0, 22, 30, 23, 0, 8, 0, 25, 34, 26, 0, 9, 0, 28, 38, 29, 0, 10, 0, 31, 42, 32, 0, 11, 0, 34, 46, 35, 0, 12, 0, 37, 50, 38
Offset: 1

Views

Author

Zak Seidov, Aug 16 2012

Keywords

Comments

a(n) = 0 for n = 6k +- 1, that is, A007310 (numbers congruent to 1 or 5 mod 6).
Graph consists of 4 linear patterns.

Crossrefs

Programs

  • Maple
    seq(modp(n*(n+1)*(2*n+1)/6,n),n=1..100); # Muniru A Asiru, Feb 07 2019
  • Mathematica
    Table[Mod[(n(n+1)(2n+1))/6,n],{n,80}] (* or *) LinearRecurrence[{0,0,0,0,0,2,0,0,0,0,0,-1},{0,1,2,2,0,1,0,4,6,5,0,2},80] (* Harvey P. Dale, Aug 25 2023 *)
  • PARI
    a(n)=n*(n+1)*(2*n+1)/6 % n; \\ Michel Marcus, Oct 19 2013
    
  • PARI
    concat(0, Vec(x^2*(1 + 2*x + 2*x^2 + x^4 + 2*x^6 + 2*x^7 + x^8) / ((1 - x)^2*(1 + x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2) + O(x^80))) \\ Colin Barker, Feb 07 2019
    
  • Python
    def A215573(n): return n*(n-1)*((n<<1)-1)//6%n # Chai Wah Wu, Jun 03 2024

Formula

a(n) = A000330(n) mod n.
From Colin Barker, Feb 07 2019: (Start)
G.f.: x^2*(1 + 2*x + 2*x^2 + x^4 + 2*x^6 + 2*x^7 + x^8) / ((1 - x)^2*(1 + x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-6) - a(n-12) for n>12. (End)
a(6*n) = n, a(6*n+1) = 0, a(6*n+2) = 3*n+1, a(6*n+3) = 4*n+2, a(6*n+4) = 3*n+2, a(6*n+5) = 0. - Philippe Deléham, Mar 05 2023
a(n) = A048153(n) mod n. - Alois P. Heinz, Jun 03 2024
a(n) = A000330(n-1) mod n. - Chai Wah Wu, Jun 03 2024
Sum_{k=1..n} a(k) ~ (11/72) * n^2. - Amiram Eldar, Apr 05 2025