A215814 a(n) = 60516*n^2 - 61008*n + 2481403.
2481403, 2480911, 2601451, 2843023, 3205627, 3689263, 4293931, 5019631, 5866363, 6834127, 7922923, 9132751, 10463611, 11915503, 13488427, 15182383, 16997371, 18933391, 20990443, 23168527, 25467643, 27887791, 30428971, 33091183, 35874427, 38778703, 41804011, 44950351
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A214732.
Programs
-
Magma
[60516*n^2-61008*n+2481403: n in [0..26]]; // Bruno Berselli, Aug 28 2012
-
Maple
A215814:=n->60516*n^2 - 61008*n + 2481403; seq(A215814(n), n=0..100); # Wesley Ivan Hurt, Nov 28 2013
-
Mathematica
Table[60516 n^2 - 61008 n + 2481403, {n, 0, 30}] (* Vincenzo Librandi, Aug 29 2012 *)
-
PARI
a(n)=60516*n^2-61008*n+2481403 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: (2481403 - 4963298*x + 2602927*x^2)/(1-x)^3. - Bruno Berselli, Aug 28 2012
From Elmo R. Oliveira, Feb 09 2025: (Start)
E.g.f.: exp(x)*(2481403 - 492*x + 60516*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Extensions
Offset changed from 1 to 0 and a(0) added from Vincenzo Librandi, Aug 29 2012
Gf adapted to the offset by Bruno Berselli, Aug 29 2012
Comments