cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A067961 Number of binary arrangements without adjacent 1's on n X n torus connected n-s.

Original entry on oeis.org

1, 9, 64, 2401, 161051, 34012224, 17249876309, 23811286661761, 84590643846578176, 792594609605189126649, 19381341794579313317802199, 1242425797286480951825250390016, 208396491430277954192889648311785961, 91534759488004239323168528670973468727049
Offset: 1

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Examples

			Neighbors for n=4:
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A156216. - Paul D. Hanna, Sep 13 2010
Cf. A215941.

Programs

  • Magma
    [Lucas(n)^n: n in [1..15]]; // Vincenzo Librandi, Mar 15 2014
  • Maple
    a:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1$2]^n:
    seq(a(n), n=1..15);  # Alois P. Heinz, Aug 01 2021
  • Mathematica
    Table[LucasL[n]^n,{n,15}] (* Harvey P. Dale, Mar 13 2014 *)

Formula

a(n) = L(n)^n, where L(n) = A000032(n) is the n-th Lucas number.
Logarithmic derivative of A156216. - Paul D. Hanna, Sep 13 2010
Sum_{n>=1} 1/a(n) = A215941. - Amiram Eldar, Nov 17 2020

Extensions

Edited by Dean Hickerson, Feb 15 2002

A215809 Prime numbers n for which the Lucas number L(n) (see A000032) is the sum of two squares.

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 127, 163, 199, 223, 307, 313, 349, 397, 433, 523, 541, 613, 619, 709, 823, 907, 1087, 1123, 1129, 1213, 1279, 1531
Offset: 1

Views

Author

V. Raman, Aug 23 2012

Keywords

Comments

These Lucas numbers L(n) have no prime factor congruent to 3 mod 4 to an odd power.
Also prime numbers n such that the Lucas number L(n) can be written in the form a^2 + 5*b^2.
Any prime factor of Lucas(n) for n prime is always of the form 1 (mod 10) or 9 (mod 10).
A number n can be written in the form a^2+5*b^2 (see A020669) if and only if n is 0,
or of the form 2^(2i) 5^j Prod_{p==1 or 9 mod 20} p^k Prod_{q==3 or 7 mod 20) q^(2m)
or of the form 2^(2i+1) 5^j Prod_{p==1 or 9 mod 20} p^k Prod_{q==3 or 7 mod 20) q^(2m+1),
for integers i,j,k,m, for primes p,q.
1607 <= a(34) <= 1747. 1747, 1951, 2053, 2467, 5107, 5419, 5851, 7243, 7741, 8467, 13963, 14449, 14887, 15511, 15907, 35449, 51169, 193201, 344293, 387433, 574219, 901657, 1051849 are terms. - Chai Wah Wu, Jul 22 2020

Examples

			Lucas(19) = 9349 = 95^2 + 18^2.
Lucas(19) = 9349 = 23^2 + 5*42^2.
		

Crossrefs

Cf. A020669, A033205 (numbers and primes of the form x^2 + 5*y^2).

Programs

  • PARI
    forprime(i=2, 500, a=factorint(fibonacci(i-1)+fibonacci(i+1))~; has=0; for(j=1, #a, if(a[1, j]%4==3&&a[2, j]%2==1, has=1; break)); if(has==0, print(i", "))) \\ a^2+b^2 form.
    
  • PARI
    forprime(i=2, 500, a=factorint(fibonacci(i-1)+fibonacci(i+1))~; flag=0; flip=0; for(j=1, #a, if(((a[1, j]%20>10))&&a[2, j]%2==1, flag=1); if(((a[1, j]%20==2)||(a[1, j]%20==3)||(a[1, j]%20==7))&&a[2, j]%2==1, flip=flip+1)); if(flag==0&&flip%2==0, print(i", "))) \\ a^2+5*b^2 form.

Extensions

Merged A215941 into this sequence, T. D. Noe, Sep 21 2012
a(30)-a(33) from Chai Wah Wu, Jul 22 2020
Showing 1-2 of 2 results.