cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A178381 Number of paths of length n starting at initial node of the path graph P_9.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 70, 125, 250, 450, 900, 1625, 3250, 5875, 11750, 21250, 42500, 76875, 153750, 278125, 556250, 1006250, 2012500, 3640625, 7281250, 13171875, 26343750, 47656250, 95312500, 172421875, 344843750
Offset: 0

Views

Author

Johannes W. Meijer, May 27 2010, May 29 2010

Keywords

Comments

Counts all paths of length n, n>=0, starting at initial node on the path graph P_9, see the Maple program.
The a(n) represent the number of possible chess games, ignoring the fifty-move and the triple repetition rules, after n moves by White in the following position: White Ka1, Nh1, pawns a2, b6, c2, d6, f2, g3 and g4; Black Ka8, Bc8, pawns a3, b7, c3, d7, f3 and g5.
The path graphs P_(2*p) have as limit(a(n+1)/a(n), n =infinity) = 2 resp. hypergeom([(p-1)/(2*p+1),(p+2)/(2*p+1)],[1/2],3/4) and the path graphs P_(2*p+1) have as limit(a(n+1)/a(n), n =infinity) = 1+cos(Pi/(p+1)), p>=1; see the crossrefs. - Johannes W. Meijer, Jul 01 2010

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 35*x^7 + 70*x^8 + ...
		

Crossrefs

This is row 9 of A094718.
a(2*n) = A147748(n) and a(2*n+1) = A081567(n).
a(4*n+2) = A109106(n) and a(4*n+3) = A179135(n).
Cf. A000007 (P_1), A000012 (P_2), A016116 (P_3), A000045 (P_4), A038754 (P_5), A028495 (P_6), A030436 (P_7), A061551 (P_8), this sequence (P_9), A336675 (P_10), A336678 (P_11), and A001405 (P_infinity).
Cf. A216212 (P_9 starting in the middle).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4))); // G. C. Greubel, Sep 18 2018
  • Maple
    with(GraphTheory): P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=36; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..P); od: seq(a(n),n=0..nmax);
    r := j -> (-1)^(j/10) - (-1)^(1-j/10):
    a := k -> add((2 + r(j))*r(j)^k, j in [1, 3, 5, 7, 9])/10:
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 18 2020
  • Mathematica
    CoefficientList[Series[(1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4), {x,0,50}], x] (* G. C. Greubel, Sep 18 2018 *)
  • PARI
    x='x+O('x^50); Vec((1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4)) \\ G. C. Greubel, Sep 18 2018
    

Formula

G.f.: (1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4).
a(n) = 5*a(n-2) - 5*a(n-4) for n>=5 with a(0)=1, a(1)=1, a(2)=2, a(3)=3 and a(4)=6.
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 + x / (1 - x / (1 - x / (1 + x / (1 + x)))))))). - Michael Somos, Feb 08 2015

A068913 Square array read by antidiagonals of number of k step walks (each step +-1 starting from 0) which are never more than n or less than -n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 2, 1, 0, 4, 4, 2, 1, 0, 4, 6, 4, 2, 1, 0, 8, 12, 8, 4, 2, 1, 0, 8, 18, 14, 8, 4, 2, 1, 0, 16, 36, 28, 16, 8, 4, 2, 1, 0, 16, 54, 48, 30, 16, 8, 4, 2, 1, 0, 32, 108, 96, 60, 32, 16, 8, 4, 2, 1, 0, 32, 162, 164, 110, 62, 32, 16, 8, 4, 2, 1, 0, 64, 324, 328, 220, 124, 64, 32, 16, 8, 4, 2, 1
Offset: 0

Views

Author

Henry Bottomley, Mar 06 2002

Keywords

Examples

			Rows start:
  1,  0,  0,  0,  0, ...
  1,  2,  2,  4,  4, ...
  1,  2,  4,  6, 12, ...
  1,  2,  4,  8, 14, ...
  ...
		

Crossrefs

Cf. early rows: A000007, A016116 (without initial term), A068911, A068912, A216212, A216241, A235701.
Central and lower diagonals are A000079, higher diagonals include A000918, A028399.

Programs

  • Mathematica
    T[n_,0]=1; T[n_,k_]:=2^k/(n+1) Sum[(-1)^r Cos[(Pi (2r-1))/(2 (n+1))]^k Cot[(Pi (1-2r))/(4 (n+1))],{r,1,n+1}]; Table[T[r,n-r],{n,0,20},{r,0,n}]//Round//Flatten (* Herbert Kociemba, Sep 23 2020 *)

Formula

Starting with T(n, 0) = 1, if (k-n) is negative or even then T(n, k) = 2*T(n, k-1), otherwise T(n, k) = 2*T(n, k-1) - A061897(n+1, (k-n-1)/2). So for n>=k, T(n, k) = 2^k. [Corrected by Sean A. Irvine, Mar 23 2024]
T(n,0) = 1, T(n,k) = (2^k/(n+1))*Sum_{r=1..n+1} (-1)^r*cos((Pi*(2*r-1))/(2*(n+1)))^k*cot((Pi*(1-2*r))/(4*(n+1))). - Herbert Kociemba, Sep 23 2020

A216219 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=5 or if k-n>=5, T(4,0) = T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 0, 5, 10, 10, 5, 0, 0, 5, 15, 20, 15, 5, 0, 0, 0, 20, 35, 35, 20, 0, 0, 0, 0, 20, 55, 70, 55, 20, 0, 0, 0, 0, 0, 75, 125, 125, 75, 0, 0, 0, 0, 0, 0, 75, 200, 250, 200
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2013

Keywords

Examples

			Square array begins:
1, 1,  1,  1,   1,   0,   0,   0,    0,    0, 0, ...
1, 2,  3,  4,   5,   5,   0,   0,    0,    0, 0, ...
1, 3,  6, 10,  15,  20,  20,   0,    0,    0, 0, ...
1, 4, 10, 20,  35,  55,  75,  75,    0,    0, 0, ...
1, 5, 15, 35,  70, 125, 200, 275,  275,    0, 0, ...
0, 5, 20, 55, 125, 250, 450, 725, 1000, 1000, 0, ...
0, 0, 20, 75, 200, 450, 900, ...
		

Crossrefs

Formula

T(n,n) = A147748(n).
T(n+1,n) = T(n,n+1) = A081567(n).
T(n+2,n) = T(n,n+2) = A039717(n+1).
T(n+3,n) = T(n+4,n) = T(n,n+3) = T(n,n+4) = A030191(n).
Sum_{k, 0<=k<=n} T(n-k,k) = A068913(4,n) = A216212(n).

A217777 Expansion of (1+x)*(1+2*x)*(1-x)/(1-5*x^2+5*x^4).

Original entry on oeis.org

1, 2, 4, 8, 15, 30, 55, 110, 200, 400, 725, 1450, 2625, 5250, 9500, 19000, 34375, 68750, 124375, 248750, 450000, 900000, 1628125, 3256250, 5890625, 11781250, 21312500, 42625000, 77109375, 154218750, 278984375, 557968750, 1009375000, 2018750000, 3651953125
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2013

Keywords

Crossrefs

Programs

  • PARI
    Vec((1+x)*(1+2*x)*(1-x)/(1-5*x^2+5*x^4)+O(x^66)) /* Joerg Arndt, Mar 29 2013 */

Formula

a(n) = A216212(n+1)/2.
a(2n) = A039717(n+1), a(2n+1) = 2*a(2n) = 2*A039717(n+1).
a(n) = sum(A217770(n-k,k), 0<=k<=n).
a(n) = 5*a(n-2) - 5*a(n-4) for n>=4, a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8.
G.f.: (1+x)*(1+2*x)*(1-x)/(1-5*x^2+5*x^4).

Extensions

Corrected name (g.f.), Joerg Arndt, Mar 29 2013

A216241 Number of n-step walks (each step +-1 starting from 0) which are never more than 5 or less than -5.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 62, 124, 236, 472, 890, 1780, 3340, 6680, 12502, 25004, 46732, 93464, 174554, 349108, 651740, 1303480, 2432918, 4865836, 9080956, 18161912, 33892954, 67785908, 126494956, 252989912, 472095062, 944190124, 1761901676, 3523803352, 6575544410, 13151088820
Offset: 0

Views

Author

Philippe Deléham, Mar 15 2013

Keywords

Crossrefs

Cf. Rows of A068913: A000007, A016116 (without initial term), A068911, A068912, A214846, A216212.

Programs

  • Mathematica
    nn=35;CoefficientList[Series[(1+2x)(1-x^2)^2/(1-6x^2+9x^4-2x^6),{x,0,nn}],x] (* Geoffrey Critzer, Jan 14 2014 *)

Formula

a(n) = A068913(5,n).
a(n) = 6*a(n-2) - 9*a(n-4) + 2*a(n-6).
a(n) = 2^n for n < 6.
G.f.: ((1-x)^2*(1+x)^2*(1+2*x)) / ((1-2*x^2)*(1-4*x^2+x^4)).
a(2*n+1) = 2*a(2*n).
a(n) = Sum_{k=0..n} A214846(n-k, k). - Philippe Deléham, Mar 25 2013

Extensions

a(34) corrected by Sean A. Irvine, May 19 2019

A235701 Number of n step walks (each step +/- 1 starting from 0) which are never more than 6 or less than -6.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 126, 252, 490, 980, 1890, 3780, 7252, 14504, 27734, 55468, 105840, 211680, 403368, 806736, 1535954, 3071908, 5845406, 11690812, 22238062, 44476124, 84582428, 169164856, 321661970, 643323940, 1223146232, 2446292464, 4650833040
Offset: 0

Views

Author

Geoffrey Critzer, Jan 14 2014

Keywords

Crossrefs

Row n=6 of A068913.

Programs

  • Mathematica
    nn=30;r=Solve[{s==1 + x a + x b, a==x s + x c, b==x s +x d, c==x a +x e, d==x b + x f, e==x c+x g, f==x d+x h,g==x e+x i, h==x f+x j,i==x g+x k,j==x h+x l,k==x i,l==x j, z==x k + x l }, {s,a,b,c,d,e,f,g,h,i,j,k,l,z}]; CoefficientList[Series[s+a+b+c+d+e+f+g+h+i+j+k+l/.r,{x,0,nn}],x]

Formula

G.f.: (1 + x - 2*x^2 - x^3)^2/(1 - 7*x^2 + 14*x^4 - 7*x^6).
Showing 1-6 of 6 results.