A216597 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6), with initial terms 0, -1, -5, -22, -91, -364.
0, -1, -5, -22, -91, -364, -1430, -5564, -21541, -83200, -321100, -1239446, -4787770, -18514119, -71683040, -277913233, -1078918139, -4194134516, -16324764560, -63616690111, -248187382924, -969250588865, -3788814577730, -14823325196459, -58040165033110, -227415509487686
Offset: 0
Examples
We have s(2)^4 + s(5)^4 + s(6)^4 + sqrt(13) = s(2)^2 + s(5)^2 + s(6)^2 = (13 - sqrt(13))/2. We note that 2*a(1) - a(2) = 1, 4*a(2) - a(3) = 2, 4*a(3) - a(4) = 3, 4*a(4) = a(5) and 4*a(n) - a(n+1) < 0 for every n = 5,6,...
References
- R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107.
- R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
- Roman Witula and D. Slota, Quasi-Fibonacci numbers of order 13, (abstract) see p. 15.
- Index entries for linear recurrences with constant coefficients, signature (13,-65,156,-182,91,-13).
Programs
-
Mathematica
LinearRecurrence[{13,-65,156,-182,91,-13}, {0,-1,-5,-22,-91,-364}, 30]
-
PARI
concat([0], Vec(-x*(13*x^4 -26*x^3 +22*x^2 -8*x +1) / (13*x^6 -91*x^5 +182*x^4 -156*x^3 +65*x^2 -13*x +1) + O(x^30))) \\ Andrew Howroyd, Feb 25 2018
Formula
G.f.: -x*(13*x^4 - 26*x^3 + 22*x^2 - 8*x + 1) / (13*x^6 - 91*x^5 + 182*x^4 - 156*x^3 + 65*x^2 - 13*x + 1). - Colin Barker, Jun 01 2013
a(n) = Sum_{k=0..n} (-1)^k*binomial(2*n,n+k)*(k|13), where (k|13) represents the Legendre symbol. - Greg Dresden, Oct 09 2022
Extensions
Better name from Joerg Arndt, Sep 17 2012
Name clarified by Robert C. Lyons, Feb 08 2025
Comments