cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217030 Semiprimes p such that next semiprime after p is p + 10.

Original entry on oeis.org

237, 427, 1027, 1101, 1661, 2723, 2747, 3173, 3295, 3669, 3849, 3873, 3963, 4087, 4227, 4237, 4667, 4717, 4897, 5007, 5017, 5277, 5837, 6145, 6249, 6445, 6697, 6757, 6787, 6943, 7483, 8373, 9169, 9183, 9543, 9673, 9691, 9903, 10063, 10135, 10239, 10523, 10981
Offset: 1

Views

Author

Zak Seidov, Sep 24 2012

Keywords

Comments

First pair of successive semiprimes with gap 10 is {237 = 3*79, 247 = 13*19}. First triple of successive semiprimes with gaps 10 is {4227 = 3*1409, 4237 = 19*223, 4247 = 31*137}. First quadruple of successive semiprimes with gaps 10 is {63643 = 31*2053, 63653 = 53*1201, 63663 = 3*21221, 63673 = 41*1553}. First 5 successive semiprimes with gaps 10 are {1381951 = 103*13417, 1381961 = 7*197423, 1381971 = 3*460657, 1381981 = 17*81293, 1381991 = 13*106307}. First 6 successive semiprimes with gaps 10 are {16476607 = 7*2353801, 16476617 = 557*29581, 16476627 = 3*5492209, 16476637 = 3677*4481, 16476647 = 11*1497877, 16476657 = 3*5492219}.

Crossrefs

Cf. A001358.

Programs

  • Magma
    IsSemiprime:=func; [n: n in [4..13000] | IsSemiprime(n) and IsSemiprime(n+10) and forall{n+i: i in [1..9] | not IsSemiprime(n+i)}]; // Bruno Berselli, Oct 01 2012
  • Mathematica
    SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; t = Select[Range[11000], SemiPrimeQ[#] &]; t2 = Differences[t]; t[[Flatten[Position[t2, 10]]]] (* T. D. Noe, Sep 24 2012 *)
    Select[Partition[Select[Range[11000],PrimeOmega[#]==2&],2,1],#[[2]]-#[[1]]==10&][[;;,1]] (* Harvey P. Dale, Jan 29 2024 *)