cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A217335 Semiprimes p such that next semiprime after p is p+20.

Original entry on oeis.org

2681, 3523, 6953, 8227, 16817, 26101, 28533, 28563, 28617, 29011, 34249, 37007, 42401, 49983, 50117, 55703, 60657, 65083, 66938, 71381, 71873, 73443, 76247, 92773, 92978, 101109, 101271, 109129, 111479, 112051, 113018, 113721, 115586, 116267, 119969, 124177
Offset: 1

Views

Author

Zak Seidov, Oct 01 2012

Keywords

Examples

			2681 = A001358(760)  = 7*383, 2701 = A001358(761) = 37*73,
3523 = A001358(986)  = 13*271, 3543 = A001358(987) = 3*1181.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [4..130000] | IsSemiprime(n) and IsSemiprime(n+20) and forall{n+i: i in [1..19] | not IsSemiprime(n+i)}]; // Bruno Berselli, Oct 01 2012
  • Mathematica
    f = Flatten@Position[Differences@(s = Select[Range@100000, PrimeOmega@# == 2 &]), 20]; s[[f]] (* Hans Rudolf Widmer, Aug 19 2024 *)

A217357 Semiprimes p such that next semiprime after p is p+30.

Original entry on oeis.org

32777, 88649, 91799, 113107, 165697, 273257, 310103, 322211, 326137, 460963, 466063, 468877, 480443, 483223, 506509, 509131, 553349, 564347, 565493, 587611, 616771, 623257, 624959, 625619, 739177, 766799, 777163, 826657, 832357, 834123, 845177, 860873, 916163
Offset: 1

Views

Author

Zak Seidov, Oct 01 2012

Keywords

Comments

Smallest difference between two consecutive terms occurs first at a(329) = 5861197 because a(330) = 5861227 and 5861227 - 5861197 = 30. Same difference for a(1212) = 16179703, a(1630) = 20611897 and a(1641) = 20703923.- Zak Seidov, Feb 14 2017

Examples

			32777 =A001358(8112)  = 73*449, 32807 = A001358(8113) = 3*619,
88649 =A001358(20880)  = 11*8059, 88679 = A001358(20881) = 71*1249.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [4..1000000] | IsSemiprime(n) and IsSemiprime(n+30) and forall{n+i: i in [1..29] | not IsSemiprime(n+i)}]; // Bruno Berselli, Oct 01 2012
  • Mathematica
    Select[Partition[Select[Range[10^6],PrimeOmega[#]==2&],2,1],#[[2]]-#[[1]] == 30&][[All,1]] (* Harvey P. Dale, May 06 2022 *)

A282407 Semiprimes p such that next semiprime after p is p + 40.

Original entry on oeis.org

741841, 1633213, 1889467, 1946677, 2210557, 2440203, 2655427, 2660857, 2729091, 2749273, 2774911, 3077323, 3724909, 3977473, 4021507, 4030891, 4323301, 4372337, 4408581, 4421713, 4608574, 4640419, 4836223, 5640861, 5691531, 6148599, 6166101, 6429853, 6786523
Offset: 1

Views

Author

Zak Seidov, Feb 14 2017

Keywords

Comments

Note that a(1) = 741841 = A131109(40).
Smallest difference between two consecutive terms occurs first at a(22060) = 1141901643 because a(22061) = 1141901683 = 1141901643 + 40.

Crossrefs

Programs

  • PARI
    is(p) = if(bigomega(p)==2 && bigomega(p+40)==2, for(i=p+1, p+39, if(bigomega(i)==2, return(0))); 1); \\ Jinyuan Wang, May 23 2021

A282424 Semiprimes p such that next semiprime after p is p + 50.

Original entry on oeis.org

1226777, 4732631, 5093729, 9210671, 12515461, 12917989, 16121409, 16183253, 16698881, 17263069, 19418903, 23003807, 24534161, 26519563, 26726659, 27625067, 29605299, 29772471, 32655031, 34027277, 34366179, 35340719, 37570683, 38117319, 38687461, 39038399, 39479381
Offset: 1

Views

Author

Zak Seidov, Feb 14 2017

Keywords

Comments

All terms are odd because even semiprime 2*p plus 50 = 2*(p+25) is multiple of 4 and not semiprime.
Note that a(1) = 1226777 = A131109(50).
Smallest possible difference is 50 but among first 10000 terms
the least difference 100 is between a(325) = 228601303 and a(326) = 228601403.

Crossrefs

Programs

  • PARI
    lista(nn) = my(r); for(k=1, nn, if(bigomega(k)==2, if(k-r==50, print1(r, ", ")); r=k)); \\ Jinyuan Wang, May 23 2021

A133597 Array of semiprimes, read by antidiagonals, where row k is the first of pairs of consecutive semiprimes j and j+k.

Original entry on oeis.org

9, 4, 14, 6, 49, 21, 10, 22, 55, 25, 69, 51, 35, 91, 33, 15, 77, 58, 46, 119, 34, 26, 123, 106, 65, 62, 143, 38, 169, 39, 365, 161, 87, 74, 159, 57, 146, 437, 134, 371, 178, 111, 82, 183, 85, 237, 226, 458, 187, 505, 221, 129, 115, 185, 86
Offset: 1

Views

Author

Jonathan Vos Post, Dec 27 2007

Keywords

Comments

Every semiprime occurs in this table exactly once. Note that similar tables exist for k-almost primes (integers with exactly k prime factors, with multiplicity), this being the k=2 slice of a 3-dimensional array.

Examples

			The array begins:
==================================================================
n=......1....2.....3....4....5....6....7....8....9...10
==================================================================
k=1.|...9...14....21...25...33...34...38...57...85...86....A070552
k=2.|...4...49....55...91..119..143..159..183..185..203....A136196
k=3.|...6...22....35...46...62...74...82..115..155..166....A264043
k=4.|. 10...51....58...65...87..111..129..209..249..274....A264044
k=5.|..69...77...106..161..178..221..254..309..314..329....A264045
k=6.|..15..123...365..371..505..545..573..591..649..707....A264046
k=7.|..26...39...134..187..194..267..519..566..655..771....
k=8.|.169..437...458..614..723..737..905..965.1047.1059....
k=9.|.146..226...278..346.1018.1177.1273.1546.1594.1865....
k=10|.237..427..1027.1101.1661.2723.2747.3173.3295.3669....A217030
==================================================================
		

Crossrefs

Programs

  • Mathematica
    v = Select[Range[5000], PrimeOmega[#]==2 &]; L[k_] := L[k] = v[[Select[Range[Length[v]-1], v[[#+1]] - v[[#]] == k &]]]; Flatten@ Table[ Table[L[k-j+1][[j]], {j, k}], {k, 10}] (* Giovanni Resta, Jun 20 2016 *)

Extensions

Corrected and edited by Giovanni Resta, Jun 20 2016
Showing 1-5 of 5 results.