A375161
Numbers k such that (23^k - 2^k)/21 is prime.
Original entry on oeis.org
5, 11, 197, 4159
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- P. Bourdelais, A Generalized Repunit Conjecture
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
A225807
Numbers n such that (17^n - 2^n)/15 is prime.
Original entry on oeis.org
2, 83, 1907, 2591, 16223, 17183
Offset: 1
-
Select[ Prime[ Range[1, 100000] ], PrimeQ[ (17^# - 2^#)/15 ]& ]
-
is(n)=ispseudoprime((17^n-2^n)/15) \\ Charles R Greathouse IV, Jun 06 2017
A375236
Numbers k such that (21^k - 2^k)/19 is prime.
Original entry on oeis.org
2, 3, 353, 751, 9587
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
A377031
Numbers k such that (27^k - 2^k)/25 is prime.
Original entry on oeis.org
2, 3, 269, 401, 631, 701, 1321, 2707, 5471, 6581
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236.
A377856
Numbers k such that (21^k + 2^k)/23 is prime.
Original entry on oeis.org
11, 17, 47, 2663
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A057187,
A057188,
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A228922,
A229542,
A375161,
A375236,
A377031.
A225955
Numbers n such that (15^n - 2^n)/13 is prime.
Original entry on oeis.org
2, 5, 11, 167, 317, 337, 349, 3449, 7517, 23003
Offset: 1
-
Select[ Prime[ Range[1, 100000] ], PrimeQ[ (15^# - 2^#)/13 ]& ]
-
is(n)=ispseudoprime((15^n-2^n)/13) \\ Charles R Greathouse IV, May 22 2017
A376329
Numbers k such that (45^k - 2^k)/43 is prime.
Original entry on oeis.org
2, 7, 89, 167, 8101, 96517
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236,
A377031.
A376470
Numbers k such that (29^k - 2^k)/27 is prime.
Original entry on oeis.org
2, 7, 139, 983, 3257, 10181, 26387, 36187, 42557
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236.
A377180
Numbers k such that (43^k - 2^k)/41 is prime.
Original entry on oeis.org
167, 797, 1009, 54941
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236,
A377031.
A377699
Numbers k such that (35^k - 2^k)/33 is prime.
Original entry on oeis.org
2, 17, 53, 211, 4013, 55207
Offset: 1
- P. Bourdelais, A Generalized Repunit Conjecture.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A062587,
A062589,
A127996,
A127997,
A128344,
A204940,
A217320,
A225807,
A229542,
A375161,
A375236,
A377031.
Showing 1-10 of 48 results.
Comments