cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A057195 Numbers k such that 2^k + 7 is prime.

Original entry on oeis.org

2, 4, 6, 8, 10, 16, 18, 20, 28, 30, 38, 44, 78, 88, 98, 126, 160, 174, 204, 214, 588, 610, 798, 926, 1190, 1198, 1806, 1888, 2648, 3454, 3510, 3864, 3870, 8970, 12330, 13330, 18876, 22338, 39718, 55006, 110784, 172470, 196434, 235710, 247280, 268408, 279320, 300874, 315268, 372950, 472258, 566496, 780284, 820356
Offset: 1

Views

Author

Robert G. Wilson v, Sep 15 2000

Keywords

Comments

Naturally all terms are even because (3-1)^(2n+1)+7 is divisible by 3. - Bruno Berselli, Oct 03 2012

Crossrefs

Cf. A104066 (primes of the form 2^k+7).

Programs

Formula

a(n) = 2*A217349(n). - Elmo R. Oliveira, Nov 12 2023

Extensions

a(37)-a(51) from Robert Price, Dec 06 2013
a(51), a(53), a(54) from Jon Grantham, Jul 29 2023

A104066 Primes of the form 2^k + 7.

Original entry on oeis.org

11, 23, 71, 263, 1031, 65543, 262151, 1048583, 268435463, 1073741831, 274877906951, 17592186044423, 302231454903657293676551, 309485009821345068724781063, 316912650057057350374175801351
Offset: 1

Views

Author

Roger L. Bagula, Mar 02 2005

Keywords

Comments

Also primes of the form 4^n+7 (in this case, the associated n are in A217349). - Bruno Berselli, Oct 03 2012

Crossrefs

Cf. A000040, A057195 (numbers k such that 2^k + 7 is prime).

Programs

  • Magma
    [a: n in [0..100 by 2] | IsPrime(a) where a is 2^n+7]; // Vincenzo Librandi, Jan 26 2011
    
  • Mathematica
    a = Delete[Union[Flatten[Table[If [PrimeQ[2^n + 7] == True, 2^ n + 7, 0], {n, 1, 400}]]], 1]
  • PARI
    list(lim)=my(v=List(),t); for(n=1,logint(lim\1-7,4), if(ispseudoprime(t=4^n+7), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Nov 17 2017

Formula

a(n) = 2^A057195(n) + 7. - Elmo R. Oliveira, Nov 08 2023

A253772 Numbers k such that 4^k + 13 is prime.

Original entry on oeis.org

1, 2, 4, 10, 19, 32, 40, 146, 566, 2054, 9967, 62639, 87814, 141092
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2015

Keywords

Comments

Numbers of the form 4^n+k (for n>0) are never primes when k is even (obviously) or when k == -1 (mod 6): in the last case, in fact, (3+1)^n + 6*h-1 is divisible by 3. - Bruno Berselli, Oct 06 2015

Crossrefs

Cf. A104067.
Cf. Numbers k such that 4^k + d is prime: A089437 (d=3), A217349 (d=7), A217350 (d=9), this sequence (d=13), A253773 (d=15), A253774 (d=19), A262345 (d=21), A204388 (d=25), A262969 (d=27), A262971 (d=31), A262972 (d=33).

Programs

  • Magma
    [n: n in [0..2000] | IsPrime(4^n+13)];
    
  • Mathematica
    Select[Range[4000], PrimeQ[4^# + 13] &]
  • PARI
    is(n)=ispseudoprime(4^n+13) \\ Charles R Greathouse IV, Feb 17 2017

Formula

a(n) = A102634(n)/2. - Elmo R. Oliveira, Nov 12 2023

Extensions

a(11)-a(14) derived from A102634 by Robert Price, Sep 06 2015
Showing 1-3 of 3 results.