cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A102634 Numbers k such that 2^k + 13 is prime.

Original entry on oeis.org

2, 4, 8, 20, 38, 64, 80, 292, 1132, 4108, 19934, 125278, 175628, 282184
Offset: 1

Views

Author

Lei Zhou, Jan 20 2005

Keywords

Comments

If k is odd, then 2^k + 13 is divisible by 3. - Robert G. Wilson v, Jan 24 2005
a(15) > 5*10^5. - Robert Price, Aug 15 2015
For k in this sequence, the number 2^(k-1)*(2^k+13) has deficiency 14, cf. A141550. - M. F. Hasler, Jul 18 2016

Examples

			2^2+13 = 17 is prime.
2^4+13 = 29 is prime.
2^3+13 = 21 is not prime.
		

Crossrefs

Cf. A019434 (2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (this), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23).

Programs

  • Mathematica
    Do[m = n; If[PrimeQ[2^n + 13], Print[n]], {n, 2, 19125, 2}] (* Robert G. Wilson v, Jan 24 2005 *)
  • PARI
    first(m)=my(v=vector(m),r=1);for(i=1,m,while(!isprime(2^r + 13),r++);v[i]=r;r++);v; \\ Anders Hellström, Aug 15 2015

Formula

a(n) = 2*A253772(n). - Elmo R. Oliveira, Nov 12 2023

Extensions

a(10) from Robert G. Wilson v, Jan 24 2005
a(11)-a(14) from Robert Price, Aug 15 2015

A261539 Numbers m such that (4^m + 5) / 3 is prime.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 12, 21, 42, 150, 195, 390, 411, 1215, 2754, 2757, 3246, 6186, 11340, 12885, 84708, 87120, 191772, 503919, 786441
Offset: 1

Views

Author

Vincenzo Librandi, Aug 25 2015

Keywords

Comments

After 1, m is not of the form 3*k+1 because in this case 4^m+5 is divisible by 9; after 2, m is not of the form 3*k+2 because in this case 4^m+5 is divisible by 7. Therefore, m>2 is always a multiple of 3. - Bruno Berselli, Aug 25 2015
Larger members of the sequence generate probable primes only. - Serge Batalov, Aug 27 2015

Examples

			6 is in the sequence because (4^6+5)/3 = 1367 is prime.
9 is in the sequence because (4^9+5)/3 = 87383 is prime.
4 is not in the sequence because (4^4+5)/3 = 87 = 3*29 is not prime.
		

Crossrefs

Cf. A163834.
Cf. numbers n such that (4^n+k)/3 is prime: this sequence (k=5), A261577 (k=11), A261578 (k=17), A261579 (k=23).
Cf. A253772.

Programs

  • Magma
    [n: n in [0..1000] | IsPrime((4^n+5) div 3)];
    
  • Mathematica
    Select[Range[0, 5000], PrimeQ[(4^# + 5)/3] &]
  • PARI
    isok(n)=isprime((4^n + 5) / 3) \\ Anders Hellström, Aug 25 2015

Extensions

a(18)-a(23) from Lelio R Paula (2012-2014) via Serge Batalov, Aug 27 2015
a(24)-a(25) from Serge Batalov, Aug 29 2015

A253773 Numbers k such that 4^k + 15 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 20, 21, 23, 36, 38, 90, 99, 155, 164, 171, 254, 255, 273, 404, 1386, 1941, 1970, 2420, 3759, 5559, 5776, 6369, 6429, 22061, 32330, 81780, 90248, 162933, 240920, 504584
Offset: 1

Views

Author

Vincenzo Librandi, Jan 12 2015

Keywords

Comments

Half of even terms of A057197. - Michel Marcus, Aug 28 2015

Examples

			For k = 15, 4^15 + 15 = 1073741839 is prime.
		

Crossrefs

Cf. A057197, A237418, A253772 (similar sequence).

Programs

  • Magma
    [n: n in [0..1300] | IsPrime(4^n+15)];
    
  • Mathematica
    Select[Range[10000], PrimeQ[4^# + 15] &]
  • PARI
    is(n)=isprime(4^n + 15) \\ Anders Hellström, Aug 28 2015

Extensions

a(31)-a(39) from A057197 data by Michel Marcus, Aug 28 2015
a(40) derived from A057197 by Robert Price, Sep 18 2015
a(41) from A057197 data by Elmo R. Oliveira, Dec 11 2023

A253774 Numbers k such that 4^k + 19 is prime.

Original entry on oeis.org

1, 3, 15, 81, 327, 357, 685, 831, 861, 1405, 38571, 78127, 216487, 546121, 622615
Offset: 1

Views

Author

Vincenzo Librandi, Jan 16 2015

Keywords

Examples

			15 is a term because 4^15 + 19 = 1073741843 is prime.
		

Crossrefs

Cf. A057221, A104068, A253772 (similar sequence).

Programs

  • Magma
    [n: n in [0..700] | IsPrime(4^n+19)];
    
  • Mathematica
    Select[Range[3000], PrimeQ[4^# + 19] &]
  • PARI
    is(n)=ispseudoprime(4^n+19) \\ Charles R Greathouse IV, Jun 06 2017

Formula

a(n) = A057221(n)/2. - Joerg Arndt, Aug 28 2015

Extensions

Three more term (using A057221) from Joerg Arndt, Aug 28 2015
a(14)-a(15) derived from A057221 by Elmo R. Oliveira, Nov 28 2023

A262971 Numbers k such that 4^k + 31 is prime.

Original entry on oeis.org

2, 6, 18, 270, 422, 596, 6068, 42140, 64178, 158732, 1509278
Offset: 1

Views

Author

Robert Price, Oct 05 2015

Keywords

Comments

The next terms are > 1.5*10^6.
Contains exactly the halved even terms of A247952.

Examples

			For k = 18, 4^18 + 31 = 68719476767 is prime.
		

Crossrefs

Cf. A247952, A253772 (similar sequence).

Programs

  • Magma
    [n: n in [0..700] | IsPrime(4^n+31)]; // Vincenzo Librandi, Oct 06 2015
    
  • Mathematica
    Select[Range[0, 250000], PrimeQ[4^# + 31] &]
  • PARI
    for(n=1, 1e3, if(isprime(4^n+31), print1(n", "))) \\ Altug Alkan, Oct 06 2015

Formula

a(n) = A247952(n)/2. - Elmo R. Oliveira, Nov 28 2023

Extensions

a(11) derived from A247952 by Elmo R. Oliveira, Nov 28 2023

A262345 Numbers k such that 4^k + 21 is prime.

Original entry on oeis.org

2, 4, 8, 22, 24, 26, 98, 228, 246, 808, 1556, 1792, 1978, 3424, 69738, 108376, 169584
Offset: 1

Views

Author

Robert Price, Sep 18 2015

Keywords

Comments

Half of even terms of A057201. - Elmo R. Oliveira, Nov 29 2023

Examples

			For k = 26, 4^26 + 21 = 4503599627370517 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..700] | IsPrime(4^n+21)];
    
  • Mathematica
    Select[Range[3000], PrimeQ[4^# + 21] &]
  • PARI
    for(n=1, 1e3, if(isprime(4^n+21), print1(n", "))) \\ Altug Alkan, Sep 18 2015

A262969 Numbers k such that 4^k + 27 is prime.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 20, 22, 43, 55, 67, 77, 92, 97, 154, 160, 533, 748, 1432, 3143, 6427, 8257, 8270, 9623, 12269, 28822, 32683, 42638, 97427, 133340, 188395, 239044
Offset: 1

Views

Author

Robert Price, Oct 05 2015

Keywords

Comments

The next terms are > 239044.
Contains exactly the halved even terms of A157007.

Examples

			For k = 22, 4^22 + 27 = 17592186044443 is prime.
		

Crossrefs

Cf. A157007, A253772 (similar sequence).

Programs

  • Magma
    [n: n in [0..700] | IsPrime(4^n+27)]; // Vincenzo Librandi, Oct 06 2015
    
  • Mathematica
    Select[Range[0, 250000], PrimeQ[4^# + 27] &]
  • PARI
    for(n=1, 1e3, if(isprime(4^n+3^3), print1(n", "))) \\ Altug Alkan, Oct 06 2015

Extensions

a(32) derived from A157007 by Elmo R. Oliveira, Nov 28 2023

A262972 Numbers k such that 4^k + 33 is prime.

Original entry on oeis.org

1, 3, 6, 7, 10, 15, 30, 34, 54, 58, 103, 105, 205, 223, 279, 741, 2098, 3523, 9210, 37674, 89895, 101509, 217123
Offset: 1

Views

Author

Robert Price, Oct 05 2015

Keywords

Comments

Contains exactly the halved even terms of A247953.
The next terms are > 2*10^5.

Examples

			For k = 30, 4^30 + 33 = 1152921504606847009 is prime.
		

Crossrefs

Cf. A247953, A253772 (similar sequence).

Programs

  • Magma
    [n: n in [0..700] | IsPrime(4^n+33)]; // Vincenzo Librandi, Oct 06 2015
    
  • Mathematica
    Select[Range[0, 250000], PrimeQ[4^# + 33] &]
  • PARI
    for(n=1, 1e3, if(isprime(4^n+33), print1(n", "))) \\ Altug Alkan, Oct 06 2015

Extensions

a(23) derived from A247953 by Elmo R. Oliveira, Nov 28 2023
Showing 1-8 of 8 results.