cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A228032 Primes of the form 8^n + 3.

Original entry on oeis.org

11, 67, 4099, 32771, 262147, 1073741827, 19342813113834066795298819
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A217354 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=8, h=3), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is  8^n+3];
  • Mathematica
    Select[Table[8^n + 3, {n, 0, 300}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A217355 Numbers k such that 8^k + 5 is prime.

Original entry on oeis.org

1, 47, 91, 64655
Offset: 1

Views

Author

Vincenzo Librandi, Oct 02 2012

Keywords

Comments

All terms are 1/3 of the terms of A059242 that are multiples of 3.
No more terms <= 10^5. - Tyler NeSmith

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(8^n + 5)];
    
  • Mathematica
    Select[Range[1000], PrimeQ[8^# + 5] &]
  • PARI
    is(n)=ispseudoprime(8^n+5) \\ Charles R Greathouse IV, Feb 20 2017

Extensions

a(4) from Tyler NeSmith, Jan 19 2021

A217353 Numbers k such that 8^k - 3 is prime.

Original entry on oeis.org

1, 2, 3, 4, 8, 50, 58, 71, 112, 1079, 1318, 2252, 3524, 4800, 5560, 6919, 11484, 12184, 41099, 94711, 375460, 449248
Offset: 1

Views

Author

Vincenzo Librandi, Oct 02 2012

Keywords

Comments

3*A217353 is a subsequence of A050414. - Bruno Berselli, Oct 02 2012

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], PrimeQ[8^# - 3] &]
  • PARI
    is(n)=ispseudoprime(8^n-3) \\ Charles R Greathouse IV, May 22 2017

Extensions

a(15)-a(17), a(19)-a(20) using A050414 by Bruno Berselli, Oct 02 2012
a(18), a(21)-a(22) using A050414 by Michael S. Branicky, Sep 15 2024

A217381 Numbers k such that 8^k + 7 is prime.

Original entry on oeis.org

2, 6, 10, 26, 42, 58, 68, 196, 266, 602, 1170, 1288, 1290, 2990, 4110, 6292, 7446, 36928, 57490, 65478, 78570, 188832, 273452
Offset: 1

Views

Author

Vincenzo Librandi, Oct 02 2012

Keywords

Comments

All terms are equal to 1/3 of the multiples of 3 in A057195.
Naturally these numbers are even because (9-1)^(2n+1)+7 is divisible by 3. - Bruno Berselli, Oct 03 2012

Crossrefs

Cf. A144360 (associated primes).

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[8^# + 7] &]
  • PARI
    is(n)=ispseudoprime(8^n+7) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(18)-a(22) from A057195 by Robert Price, Jul 23 2017
a(23) from the data at A057195 added by Amiram Eldar, Jul 23 2025

A217382 Numbers k such that 8^k + 9 is prime.

Original entry on oeis.org

1, 2, 3, 6, 10, 19, 22, 109, 798, 1498, 1519, 3109, 5491, 13351, 26983, 48799, 57909, 98109
Offset: 1

Views

Author

Vincenzo Librandi, Oct 03 2012

Keywords

Comments

All terms are equal to 1/3 of the multiples of 3 in A057196.

Crossrefs

Cf. A145440 (associated primes).

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[8^# + 9] &]
  • PARI
    is(n)=ispseudoprime(8^n+9) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(16)-a(18) from Michael S. Branicky, May 17 2025 using b-file at A057196
Showing 1-5 of 5 results.