A217389 Partial sums of the ordered Bell numbers (number of preferential arrangements) A000670.
1, 2, 5, 18, 93, 634, 5317, 52610, 598445, 7685706, 109933269, 1732565842, 29824133437, 556682481818, 11198025452261, 241481216430114, 5557135898411469, 135927902927547370, 3521462566184392693, 96323049885512803826, 2774010846129897006941, 83898835844633970888762
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Magma
A000670:=func
; [&+[A000670(k): k in [0..n]]: n in [0..19]]; // Bruno Berselli, Oct 03 2012 -
Maple
b:= proc(n, k) option remember; `if`(n=0, k!, k*b(n-1, k)+b(n-1, k+1)) end: a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+b(n, 0)) end: seq(a(n), n=0..23); # Alois P. Heinz, Feb 20 2025
-
Mathematica
t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[t[k], {k, 0, n}], {n, 0, 100}] (* second program: *) Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; Table[Fubini[n, 1], {n, 0, 20}] // Accumulate (* Jean-François Alcover, Mar 31 2016 *)
-
Maxima
t(n):=sum(stirling2(n,k)*k!,k,0,n); makelist(sum(t(k),k,0,n),n,0,40);
-
PARI
for(n=0,30, print1(sum(k=0,n, sum(j=0,k, j!*stirling(k,j,2))), ", ")) \\ G. C. Greubel, Feb 07 2018
Formula
a(n) = Sum_{k=0..n} t(k), where t = A000670 (ordered Bell numbers).
G.f. = A(x)/(1-x), where A(x) = g.f. for A000670 (see that entry). - N. J. A. Sloane, Apr 12 2014
a(n) ~ n! / (2* (log(2))^(n+1)). - Vaclav Kotesovec, Nov 08 2014