A217444 a(n) = A(n)*7^(-floor(n+1)/3), where A(n) = 7*A(n-1) - 14*A(n-2) + 7*A(n-3) with A(0)=0, A(1)=1, A(2)=7.
0, 1, 1, 5, 22, 13, 52, 204, 113, 435, 1667, 910, 3471, 13224, 7192, 27367, 104105, 56563, 215098, 817909, 444276, 1689212, 6422529, 3488381, 13262821, 50424942, 27387681, 104126704, 395884336, 215018609, 817488295, 3108041875, 1688083894, 6417991803, 24400809980
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,10,0,0,-17,0,0,1).
Crossrefs
Programs
-
Magma
i:=35; I:=[0, 1, 7]; A:=[m le 3 select I[m] else 7*Self(m-1)-14*Self(m-2)+7*Self(m-3): m in [1..i]]; [7^(-Floor(n/3))*A[n]: n in [1..i]]; // Bruno Berselli, Oct 03 2012
-
Mathematica
CoefficientList[Series[x*(1+x+5*x^2+12*x^3+3*x^4+2*x^5+x^6)/(1 - 10*x^3 + 17*x^6 - x^9), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *) LinearRecurrence[{0,0,10,0,0,-17,0,0,1}, {0, 1, 1, 5, 22, 13, 52, 204, 113}, 50] (* G. C. Greubel, Apr 23 2018 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x*(1+x+5*x^2+12*x^3+3*x^4 +2*x^5 +x^6)/(1- 10*x^3+17*x^6-x^9))) \\ G. C. Greubel, Apr 23 2018
Formula
G.f.: x*(1+x+5*x^2+12*x^3+3*x^4+2*x^5+x^6)/(1-10*x^3+17*x^6-x^9). - Bruno Berselli, Oct 03 2012
a(n) = 10*a(n-3) - 17*a(n-6) + a(n-9). - G. C. Greubel, Apr 23 2018
Comments