cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A217274 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=7.

Original entry on oeis.org

0, 1, 7, 35, 154, 637, 2548, 9996, 38759, 149205, 571781, 2184910, 8333871, 31750824, 120875944, 459957169, 1749692735, 6654580387, 25306064602, 96226175941, 365880389868, 1391138718116, 5289228800247, 20109822277181, 76457523763621, 290689756066542
Offset: 0

Views

Author

Roman Witula, Sep 29 2012

Keywords

Comments

This is the Berndt-type sequence number 18 for the argument 2*Pi/7 defined by the relation
a(n)*sqrt(7) = c(4)*s(1)^(2n+1) + c(2)*s(4)^(2n+1) + c(1)*s(2)^(2n+1) = (1/s(4))*s(1)^(2n+2) + (1/s(2))*s(4)^(2n+2) + (1/s(1))*s(2)^(2n+2), where c(j) := 2*cos(2*Pi*j/7) and s(j) := 2*sin(2*Pi*j/7) (for the sums of the respective even powers see A094429). For the proof of this formula see the Witula/Slota and Witula references.
The definitions of the other Berndt-type sequences for the argument 2*Pi/7 (with numbers from 1 to 17) are in the cross references.
We note that all numbers of the form a(n)*7^(-floor((n+1)/3)) = A217444(n) are integers.
It can be proved that Sum_{k=2..n}a(k) = 7*(a(n-1) - a(n-2)).

Examples

			Writing c(j) as cj and s(k) as sk,
we have 7*sqrt(7) = c4*s1^5 + c2*s4^5 + c1*s2^5
and c4*s1^13 + c2*s4^13 + c1*s2^13 = 4(c4*s1^11 + c2*s4^11 + c1*s2^11).
We note that a(9) = 87*a(3)*a(2)^2 and a(11) = 2*a(3)*a(5)*a(2)^2.
		

Crossrefs

Programs

  • Magma
    I:=[0,1,7]; [n le 3 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 26 2015
  • Mathematica
    LinearRecurrence[{7,-14,7}, {0,1,7}, 30]
    CoefficientList[Series[x/(1 - 7*x + 14*x^2 - 7*x^3), {x,0,50}], x] (* G. C. Greubel, Apr 16 2017 *)
  • Maxima
    a[0]:0$
    a[1]:1$
    a[2]:7$
    a[n]:=7*a[n-1] - 14*a[n-2] + 7*a[n-3];
    makelist(a[n], n, 0, 25); /* Martin Ettl, Oct 11 2012 */
    
  • PARI
    concat(0, Vec(x/(1-7*x+14*x^2-7*x^3) + O(x^40))) \\ Michel Marcus, Jul 25 2015
    

Formula

G.f.: x/(1-7*x+14*x^2-7*x^3).

A319512 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0) = 1, a(1) = 3, a(2) = 11.

Original entry on oeis.org

1, 3, 11, 42, 161, 616, 2352, 8967, 34153, 129997, 494606, 1881355, 7154980, 27208132, 103456689, 393367835, 1495638123, 5686513994, 21620239081, 82199944512, 312521862408, 1188195487255, 4517461948657, 17175149855885, 65298950120782, 248262786503683
Offset: 0

Views

Author

Kai Wang, Dec 10 2018

Keywords

Comments

Let {X,Y,Z} be the roots of the cubic equation
t^3 + at^2 + bt + c = 0
where {a, b, c} are integers. Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers. Then
{p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...}
is an integer sequence with the recurrence relation:
p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).
This sequence has (a, b, c) = (-7, 14, -7), (u, v, w) = (1/(sqrt(7)*tan(4*(Pi/7))), 1/(sqrt(7)*tan(8*(Pi/7))), 1/(sqrt(7)*tan(2*(Pi/7)))).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -14, 7}, {1, 3, 11}, 30] (* Amiram Eldar, Dec 10 2018 *)
    CoefficientList[Series[(1-2x)^2/(1-7x+14x^2-7x^3),{x,0,30}],x] (* Harvey P. Dale, Oct 08 2023 *)
  • PARI
    Vec((1 - 2*x)^2 / (1 - 7*x + 14*x^2 - 7*x^3) + O(x^40)) \\ Colin Barker, Dec 11 2018

Formula

(X, Y, Z) = (4*sin^2(2*(Pi/7)), 4*sin^2(4*(Pi/7)), 4*sin^2(8*(Pi/7)));
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0) = 1, a(1) = 3, a(2) = 11.
G.f.: (1 - 2*x)^2 / (1 - 7*x + 14*x^2 - 7*x^3). - Colin Barker, Dec 11 2018

Extensions

More terms from Felix Fröhlich, Dec 10 2018
Showing 1-2 of 2 results.