cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A217830 Number of permutations of length 3n with descent set {3, 6, ...} that avoid a certain pattern of length 4 or 5 (see Lewis, 2012, Appendix, for precise definition).

Original entry on oeis.org

1, 19, 1513, 211425, 40607753, 9694117094
Offset: 1

Views

Author

N. J. A. Sloane, Oct 13 2012

Keywords

Crossrefs

Extensions

a(5)-a(6) from Lars Blomberg, Mar 09 2018

A217800 Number of alternating permutations on 2n+1 letters that avoid a certain pattern of length 4 (see Lewis, 2012, Appendix, for precise definition).

Original entry on oeis.org

1, 2, 12, 110, 1274, 17136, 255816, 4124406, 70549050, 1264752060, 23555382240, 452806924752, 8939481277552, 180551099694400, 3719061442253520, 77933728043586630, 1658001861319441050, 35749633305661575300, 780123576993991461000, 17208112644166765652100
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2012

Keywords

Comments

1 together with A007724. - Omar E. Pol, Aug 22 2016

Crossrefs

Programs

  • Magma
    [Factorial(3*n+3)/((4*(n+1)^2-1)*Factorial((n+1))^2*Factorial(n+ 2)): n in [0..20]]; // Vincenzo Librandi, Aug 30 2014
  • Maple
    a := n -> (-1)^n*hypergeom([-2-2*n, -2*n, -2*n-1], [2, 3], 1):
    seq(round(evalf(a(n), 32)), n=0..20); # Peter Luschny, Aug 29 2014
  • Mathematica
    Table[(3 n + 3)!/((4 (n + 1)^2 - 1) ((n + 1)!)^2 (n + 2)!), {n, 0, 20}] (* Vincenzo Librandi, Aug 30 2014 *)
    Table[(-1)^n HypergeometricPFQ[{-2 - 2 n, -2 n, -2 n - 1}, {2, 3}, 1], {n, 0, 20}] (* Michael De Vlieger, Aug 22 2016 *)
  • PARI
    a(n) = (3*n+3)!/((4*(n+1)^2-1)*((n+1)!)^2*(n+2)!); \\ Michel Marcus, Aug 10 2014
    

Formula

From Karol A. Penson, Aug 10 2014: (Start)
O.g.f.(in Maple notation): hypergeom([1/2, 1, 4/3, 5/3], [2, 5/2, 3], 27*z);a(n) ~ (1/93312)*sqrt(3)*27^n*(314928*n^4-1644624*n^3+5545260*n^2 -15387660*n+38310503)/(Pi*n^8), for n -> infinity.
Representation of a(n) as the n-th power moment of a positive function on the segment [0,27]:
a(n) = int(x^n*W(x),x=0..27),n=0,1,2..., where
W(x) = 1/(Pi*sqrt(x))+sqrt(x)/Pi-(9/20)*sqrt(3)*2^(1/3)* hypergeom([-2/3, -1/6, 1/3], [2/3, 11/6], (1/27)*x)*x^(1/3)/ (sqrt(Pi)*Gamma(5/6)*Gamma(2/3))-(27/56)*2^(2/3)*Gamma(5/6) *Gamma(2/3)*hypergeom([-1/3, 1/6, 2/3], [4/3, 13/6], (1/27)*x)* x^(2/3)/Pi^(5/2).
W(x) for x->0 has the singularity 1/sqrt(x), W(27)=0.
This is the solution of the Hausdorff moment problem and is unique.
a(n) = (1/2)*(n+3)!/((4*(n+1)^2-1)*(n+1)!)*A005789(n), where A005789(n) are the three-dimensional Catalan numbers (see the Gorska and Penson link).(End)
a(n) = A006480(n+1)/((2+n)*(1+2*n)*(3+2*n)). - Peter Luschny, Aug 15 2014
a(n) = (-1)^n*hypergeom([-2-2*n,-2*n,-2*n-1],[2,3],1). - Peter Luschny, Aug 29 2014
(2*n+3)*(n+2)*(n+1)*a(n) -3*(3*n+2)*(2*n-1)*(3*n+1)*a(n-1)=0. - R. J. Mathar, Jun 14 2016
a(n) ~ 3^(3*n + 7/2) / (8*Pi*n^4). - Vaclav Kotesovec, Jun 09 2019

Extensions

More terms from Alois P. Heinz, Aug 22 2016
Merged with A241958 by R. J. Mathar, Jul 07 2023

A217823 Number of permutations of length 3n with descent set {3, 6, ...} that avoid a certain pattern of length 4 or 5 (see Lewis, 2012, Appendix, for precise definition).

Original entry on oeis.org

1, 1, 9, 153, 3579, 101630, 3288871
Offset: 0

Views

Author

N. J. A. Sloane, Oct 13 2012

Keywords

Comments

Is this the same sequence as A361190?

Crossrefs

Extensions

a(5)-a(6) from Lars Blomberg, Mar 09 2018
a(0)=1 prepended by Alois P. Heinz, Jul 31 2023

A217801 Number of alternating permutations on 2n+1 letters that avoid a certain pattern of length 4 (see Lewis, 2012, Appendix, for precise definition).

Original entry on oeis.org

1, 2, 12, 106, 1138, 13734, 179192, 2471958, 35557668
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2012

Keywords

Crossrefs

Extensions

a(6)-a(8) from Lars Blomberg, Jan 23 2018

A217802 Number of alternating permutations on 2n+1 letters that avoid a certain pattern of length 4 (see Lewis, 2012, Appendix, for precise definition).

Original entry on oeis.org

1, 2, 12, 110, 1285, 17653, 272832, 4615282, 83898083
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2012

Keywords

Crossrefs

Extensions

a(6)-a(8) from Lars Blomberg, Jan 23 2018

A217803 Number of alternating permutations on 2n+1 letters that avoid a certain pattern of length 4 (see Lewis, 2012, Appendix, for precise definition).

Original entry on oeis.org

1, 2, 12, 108, 1202, 15234, 210696, 3102296, 47875884
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2012

Keywords

Crossrefs

Extensions

a(6)-a(8) from Lars Blomberg, Jan 23 2018

A217804 Number of alternating permutations on 2n+1 letters that avoid a certain pattern of length 4 (see Lewis, 2012, Appendix, for precise definition).

Original entry on oeis.org

1, 2, 16, 168, 2072, 28298, 414472, 6387436, 102316000
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2012

Keywords

Crossrefs

Extensions

a(6)-a(8) from Lars Blomberg, Jan 23 2018

A217805 Number of alternating permutations on 2n letters that avoid a certain pattern of length 4 (see Lewis, 2012, Appendix, for precise definition).

Original entry on oeis.org

1, 5, 42, 444, 5337, 69657, 962939, 13890083, 207042035
Offset: 1

Views

Author

N. J. A. Sloane, Oct 12 2012

Keywords

Crossrefs

Extensions

a(7)-a(9) from Lars Blomberg, Feb 17 2018

A217806 Number of alternating permutations on 2n letters that avoid a certain pattern of length 4 (see Lewis, 2012, Appendix, for precise definition).

Original entry on oeis.org

1, 4, 28, 260, 2844, 34564, 451868, 6231556, 89510428
Offset: 1

Views

Author

N. J. A. Sloane, Oct 12 2012

Keywords

Crossrefs

Extensions

a(7)-a(9) from Lars Blomberg, Feb 17 2018

A217807 Number of alternating permutations on 2n letters that avoid a certain pattern of length 4 (see Lewis, 2012, Appendix, for precise definition).

Original entry on oeis.org

1, 4, 29, 292, 3620, 51866, 827415, 14350467, 266218320
Offset: 1

Views

Author

N. J. A. Sloane, Oct 12 2012

Keywords

Crossrefs

Extensions

a(7)-a(9) from Lars Blomberg, Feb 17 2018
Showing 1-10 of 31 results. Next