O.g.f.(in Maple notation): hypergeom([1/2, 1, 4/3, 5/3], [2, 5/2, 3], 27*z);a(n) ~ (1/93312)*sqrt(3)*27^n*(314928*n^4-1644624*n^3+5545260*n^2 -15387660*n+38310503)/(Pi*n^8), for n -> infinity.
Representation of a(n) as the n-th power moment of a positive function on the segment [0,27]:
a(n) = int(x^n*W(x),x=0..27),n=0,1,2..., where
W(x) = 1/(Pi*sqrt(x))+sqrt(x)/Pi-(9/20)*sqrt(3)*2^(1/3)* hypergeom([-2/3, -1/6, 1/3], [2/3, 11/6], (1/27)*x)*x^(1/3)/ (sqrt(Pi)*Gamma(5/6)*Gamma(2/3))-(27/56)*2^(2/3)*Gamma(5/6) *Gamma(2/3)*hypergeom([-1/3, 1/6, 2/3], [4/3, 13/6], (1/27)*x)* x^(2/3)/Pi^(5/2).
W(x) for x->0 has the singularity 1/sqrt(x), W(27)=0.
This is the solution of the Hausdorff moment problem and is unique.
a(n) = (1/2)*(n+3)!/((4*(n+1)^2-1)*(n+1)!)*
A005789(n), where
A005789(n) are the three-dimensional Catalan numbers (see the Gorska and Penson link).(End)
a(n) = (-1)^n*hypergeom([-2-2*n,-2*n,-2*n-1],[2,3],1). -
Peter Luschny, Aug 29 2014
(2*n+3)*(n+2)*(n+1)*a(n) -3*(3*n+2)*(2*n-1)*(3*n+1)*a(n-1)=0. -
R. J. Mathar, Jun 14 2016
Comments